- #1
AxiomOfChoice
- 533
- 1
Suppose you have an inner product space [itex]V[/itex] (not necessarily finite dimensional; so it could be an infinite dimensional Hilbert space or something). Fix a vector [itex]\Phi[/itex] in this space. Given an arbitrary vector [itex]\Psi \in V[/itex], can I write it as
[tex]
\Psi = \Psi^{\parallel} + \Psi^{\perp},
[/tex]
where [itex]\Psi^{\parallel}[/itex] is parallel to the given [itex]\Phi[/itex] and [itex]\Psi^{\perp}[/itex] is perpendicular to the given [itex]\Phi[/itex]?
[tex]
\Psi = \Psi^{\parallel} + \Psi^{\perp},
[/tex]
where [itex]\Psi^{\parallel}[/itex] is parallel to the given [itex]\Phi[/itex] and [itex]\Psi^{\perp}[/itex] is perpendicular to the given [itex]\Phi[/itex]?