- #1
SithsNGiggles
- 186
- 0
Homework Statement
Show that the vectors
##\sqrt{\frac{2}{3}}(1,0), \sqrt{\frac{2}{3}}\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right), \sqrt{\frac{2}{3}}\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)##
form a Parseval frame of ##\mathbb{R}^2##, but are neither linearly independent nor orthonormal
Homework Equations
The definition of Parseval frame, according to class notes, is
"A sequence of vectors ##\displaystyle\left\{x_i \right\}_{i=1}^{k}## of an inner product space ##V## of dimension ##n (n\leq k)## is called a Parseval frame for ##V## if ##\forall x\in V##,
##||x||^2=\displaystyle\sum_{i=1}^{k}|\langle x,x_i \rangle|^2##.
The Attempt at a Solution
I'm not quite sure how to interpret the definition. Or maybe I do, I just don't know how to implement it.
What I've got so far:
##||x||^2 = \langle x,x\rangle = \displaystyle\sum_{i=1}^{3}|\langle x,x_i \rangle|^2##
##||x||^2 = \left|\left\langle x,\sqrt{\frac{2}{3}}(1,0)\right\rangle\right|^2 + \left|\left\langle x,\sqrt{\frac{2}{3}}\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right) \right\rangle\right|^2 + \left|\left\langle x,\sqrt{\frac{2}{3}}\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \right\rangle\right|^2##
##||x||^2 = \frac{2}{3} \left[\left|\left\langle x,(1,0)\right\rangle\right|^2 + \left|\left\langle x,\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right) \right\rangle\right|^2 + \left|\left\langle x,\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \right\rangle\right|^2\right]##
Then, I suppose I take the dot product since ##\mathbb{R}^2## is my inner product space, so I let ##x = (x_1,x_2)##, where ##x_1,x_2\in\mathbb{R}##. Then I write
##||x||^2 = \frac{2}{3} \left[|x_1|^2 + \left| -\frac{1}{2}x_1 + \frac{\sqrt{3}}{2}x_2 \right|^2 + \left| -\frac{1}{2}x_1 - \frac{\sqrt{3}}{2}x_2 \right|^2\right]##
Factoring out some constants gives me
##||x||^2 = \frac{2}{3} \left[|x_1|^2 + \frac{1}{4}\left|x_1 - \sqrt{3}x_2 \right|^2 + \frac{1}{4}\left|x_1 + \sqrt{3}x_2 \right|^2\right]##
And that's all I've done. I'm not sure if I'm even doing this right. I've already shown that the vectors aren't linearly independent and orthonormal. Any ideas? Thanks.