- #1
Sumedh
- 62
- 0
Solve for x-- the inequality of quadratic
Solve [tex]\frac{2x}{x^2-9}\le\frac{1}{x+2}[/tex]
[tex]x^2-9\not=0[/tex]
.'. [tex]x\in R-\{-3,3\}[/tex]
and
[tex]x+2\not=0[/tex]
.'. [tex]x\in R-\{-2\}[/tex]
then converting the original inequality to
[tex](2x)(x+2)\le(x^2-9)[/tex]
[tex](2x^2+4x)(-x^2+9)\le 0[/tex]
[tex](x^2+4x+9)\le 0[/tex]
As Discriminant <0 it has no real roots
so how to do further...
My assumptions:-
[tex]x^2-9[/tex]should not be zero
[tex]x+2[/tex]should also not be zero
Are my assumptions right?
Any help will be highly appreciated.
Homework Statement
Solve [tex]\frac{2x}{x^2-9}\le\frac{1}{x+2}[/tex]
The Attempt at a Solution
[tex]x^2-9\not=0[/tex]
.'. [tex]x\in R-\{-3,3\}[/tex]
and
[tex]x+2\not=0[/tex]
.'. [tex]x\in R-\{-2\}[/tex]
then converting the original inequality to
[tex](2x)(x+2)\le(x^2-9)[/tex]
[tex](2x^2+4x)(-x^2+9)\le 0[/tex]
[tex](x^2+4x+9)\le 0[/tex]
As Discriminant <0 it has no real roots
so how to do further...
My assumptions:-
[tex]x^2-9[/tex]should not be zero
[tex]x+2[/tex]should also not be zero
Are my assumptions right?
Any help will be highly appreciated.