- #1
assyrian_77
- 115
- 0
I've been trying to work on this for a while:
Let us say I have an [tex]S=1/2[/tex] dimer with [tex]H=JS_{1}\cdot S_{2}[/tex]. With a [tex]\hat{z}[/tex]-diagonal basis, [tex]|\uparrow\uparrow\rangle[/tex], [tex]|\uparrow\downarrow\rangle[/tex], [tex]|\downarrow\uparrow\rangle[/tex], [tex]|\downarrow\downarrow\rangle[/tex], I can easily construct the H-matrix by either using the Pauli matrices or the S-operators. Diagonalizing the matrix gives me the energy eigenvalues and the eigenvectors. Although I can get the energies in an easier way.
My problem/dilemma/question is this: What if I have an [tex]S=3/2[/tex] dimer (same form on H)? What [tex]\hat{z}[/tex]-diagonal basis (if any) can I use? And am I right in assuming that the matrices to use are the [tex]4\times4[/tex]-matrices listed in e.g. Schiff: Quantum Mechanics (1968), page 203? (Don't feel like typing them right now)
And a bonus-question: Assuming now [tex]S=1[/tex]. What happens?
*I feel a bit silly for not knowing this*
Let us say I have an [tex]S=1/2[/tex] dimer with [tex]H=JS_{1}\cdot S_{2}[/tex]. With a [tex]\hat{z}[/tex]-diagonal basis, [tex]|\uparrow\uparrow\rangle[/tex], [tex]|\uparrow\downarrow\rangle[/tex], [tex]|\downarrow\uparrow\rangle[/tex], [tex]|\downarrow\downarrow\rangle[/tex], I can easily construct the H-matrix by either using the Pauli matrices or the S-operators. Diagonalizing the matrix gives me the energy eigenvalues and the eigenvectors. Although I can get the energies in an easier way.
My problem/dilemma/question is this: What if I have an [tex]S=3/2[/tex] dimer (same form on H)? What [tex]\hat{z}[/tex]-diagonal basis (if any) can I use? And am I right in assuming that the matrices to use are the [tex]4\times4[/tex]-matrices listed in e.g. Schiff: Quantum Mechanics (1968), page 203? (Don't feel like typing them right now)
And a bonus-question: Assuming now [tex]S=1[/tex]. What happens?
*I feel a bit silly for not knowing this*