- #1
spacefreak
- 2
- 0
Homework Statement
Evaluate the following limit or give a reason explaining why the limit does not exist.
[tex]\lim_{(x,y) \to (0,0)}\frac{x-y}{x+y}[/tex]
Homework Equations
[tex]x = r*\cos\theta[/tex]
[tex]y = r*\sin\theta[/tex]
The Attempt at a Solution
[tex]\lim_{r \to 0}\frac{r*\cos\theta-r*\sin\theta}{r*\cos\theta+r*\sin\theta} =
\lim_{r \to 0}\frac{\cos\theta-\sin\theta}{\cos\theta+\sin\theta} =
\lim_{r \to 0}\frac{1}{1+\tan\theta} - \lim_{r \to 0}\frac{1}{1+\cot\theta}[/tex]
When I get to this point, I'm stuck. How do I either find the limit or show that it doesn't exist?
Last edited: