- #1
krindik
- 65
- 1
Hi,
While trying to simplify a solution I came up with the following sparse matrix but don't know how to solve it. [tex] [A(t)][X] = 0 [/tex]
[tex]
$\left(
\begin{array}{ccccc}
A_0(t) & 1 & 1 & ... & 1 \\
A_1(t) & 1 & 0 & ... & 0 \\
... & ... & ... & ... & ... \\
A_{n-1}(t) & 0 & ... & 1 & 0 \\
A_n(t) & 0 & ... & 0 & 1 \\
\end{array}
\right)
\left(
\begin{array}{c}
x_0 \\
x_1 \\
... \\
x_{n-1} \\
x_n
\end{array}
\right)
= 0
$
[/tex]
I need to find solutions for [tex]t[/tex] satisfying [tex]|A(t)| = 0[/tex]
I would really appreciate if you would point me in finding out
1. Whether there is actually an analytic solution for this
2. If not a suitable numerical technique to find solutions
Thanks
Krindik
While trying to simplify a solution I came up with the following sparse matrix but don't know how to solve it. [tex] [A(t)][X] = 0 [/tex]
[tex]
$\left(
\begin{array}{ccccc}
A_0(t) & 1 & 1 & ... & 1 \\
A_1(t) & 1 & 0 & ... & 0 \\
... & ... & ... & ... & ... \\
A_{n-1}(t) & 0 & ... & 1 & 0 \\
A_n(t) & 0 & ... & 0 & 1 \\
\end{array}
\right)
\left(
\begin{array}{c}
x_0 \\
x_1 \\
... \\
x_{n-1} \\
x_n
\end{array}
\right)
= 0
$
[/tex]
I need to find solutions for [tex]t[/tex] satisfying [tex]|A(t)| = 0[/tex]
I would really appreciate if you would point me in finding out
1. Whether there is actually an analytic solution for this
2. If not a suitable numerical technique to find solutions
Thanks
Krindik