- #1
jrjack
- 111
- 0
Homework Statement
[cscx/(1+cscx)] - [cscx/(1-cscx)] = 2 sec^2 x
Homework Equations
prove the left side equals the right side
The Attempt at a Solution
1. get common denominator and subtract, [cscx(1-cscx)-cscx(1+cscx)]/[(1+cscx)(1-cscx)]
2. distribute cscx in numerator [cscx-csc^2 x-cscx-csc^2 x]/
and multiply out denominator [1-csc^2 x]
3. combine like terms numerator [-2csc^2x]/
identity in denominator (cot^2 x)
4. reciprocal of cot=1/tan, then divide num/dem (-2csc^2 x)(tan^2 x)
5. change csc and tan to sin, cos [-2(1/sin^2 x)] [(sin^2 x)/(cos^2x)]
6. cross cancel and multiply -2(1/cos^2 x) or -2sec^2 x
I have checked this several times and cannot figure out why I get -2 instead of 2.