- #1
Anypodetos
- 17
- 1
I'm trying to understand how the various EM tensors work in General Relativity. The only source I've found is https://en.wikipedia.org/wiki/Maxwell's_equations_in_curved_spacetime, but there are two things I don't get.
Why do they use ordinary partial derivatives instead of covariant ones? It's clear for the definition of Fμν because here the correction terms (Christoffel symbols) cancel, but I don't see how that should work for the definition of Jμ. And further down, the continuity equation is given as ##\partial_μ J^μ =0 ##. Isn't this equation coordinate system dependent? How can this be a law?
The second (possibly related) issue is their use of tensor densities for D and J. This means the time component of J has a dimension of charge per unit cube, whereas using a vector would mean charge per lengh cubed; is that right? Could that somehow fix the problem with the partial derivative? The maths is beyond me, I'm afraid.
Why do they use ordinary partial derivatives instead of covariant ones? It's clear for the definition of Fμν because here the correction terms (Christoffel symbols) cancel, but I don't see how that should work for the definition of Jμ. And further down, the continuity equation is given as ##\partial_μ J^μ =0 ##. Isn't this equation coordinate system dependent? How can this be a law?
The second (possibly related) issue is their use of tensor densities for D and J. This means the time component of J has a dimension of charge per unit cube, whereas using a vector would mean charge per lengh cubed; is that right? Could that somehow fix the problem with the partial derivative? The maths is beyond me, I'm afraid.