- #36
arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
- 10,123
- 138
Before I deal with angles of attack, and how this concept can be seen as related to curvatures/centripetal accelerations, I'll focus on a perhaps trivial feature we can see in a normal streamline picture:
In order to join the curved portion of a streamline directly above the wing profile with the straight, horizontal portions of the same profile (i.e, the shape in infinity), we need to add "small" circular arcs in front of and behind the wing of opposite curvature sign than the sign of the arc in the region directly above the wing.
("small" means either here a short curved segment, or very slight curvature on average.)
A similar argument holds, of course, for streamlines in the lower domain.
But, drawing normal lines from the wing to infinity through these portions clearly indicate that there are regions at the upper airfoil with HIGHER pressure than the free-stream pressure. These are of course the regions in the vicinity of the stagnation pressures at the leading and trailing edges.
That is, when we draw a typical realistic streamline diagram with a smoothly tangential flow at the trailing edge (i.e, consistent with the Kutta condition), we see that this is equivalent with placing the stagnation pressures AT the edges (where they belong).
That is, the Kutta condition could equal well be written in specifying where we want the stagnation pressures to be, and that is essentially how russ' first link writes the condition.
This should be taken as our first indication that the Euler equations (equations of motion governing inviscid flow) are possibly defective compared with say, the full Navier-Stokes equations; that is:
If we have to specify (in the stationary case) where the stagnation pressures shall be, in addition to the normal boundary conditions, how can we be sure that the unique solution of the time-dependent Euler equations (starting from the plane at rest in the ground frame) will converge towards the stationary solution (stationary, that is, as seen from the wing's rest frame) which fulfills the Kutta condition?
As it happens, it doesn't...
In order to join the curved portion of a streamline directly above the wing profile with the straight, horizontal portions of the same profile (i.e, the shape in infinity), we need to add "small" circular arcs in front of and behind the wing of opposite curvature sign than the sign of the arc in the region directly above the wing.
("small" means either here a short curved segment, or very slight curvature on average.)
A similar argument holds, of course, for streamlines in the lower domain.
But, drawing normal lines from the wing to infinity through these portions clearly indicate that there are regions at the upper airfoil with HIGHER pressure than the free-stream pressure. These are of course the regions in the vicinity of the stagnation pressures at the leading and trailing edges.
That is, when we draw a typical realistic streamline diagram with a smoothly tangential flow at the trailing edge (i.e, consistent with the Kutta condition), we see that this is equivalent with placing the stagnation pressures AT the edges (where they belong).
That is, the Kutta condition could equal well be written in specifying where we want the stagnation pressures to be, and that is essentially how russ' first link writes the condition.
This should be taken as our first indication that the Euler equations (equations of motion governing inviscid flow) are possibly defective compared with say, the full Navier-Stokes equations; that is:
If we have to specify (in the stationary case) where the stagnation pressures shall be, in addition to the normal boundary conditions, how can we be sure that the unique solution of the time-dependent Euler equations (starting from the plane at rest in the ground frame) will converge towards the stationary solution (stationary, that is, as seen from the wing's rest frame) which fulfills the Kutta condition?
As it happens, it doesn't...
Last edited: