- #1
mathnerd15
- 109
- 0
Hi! I think I have to ask this since I'm having health problems-
from Kreyszig, for xy'=-y how do you verify the solution y=h(x)=clnx by differentiating
y'=h'(x)=-clnx^2? I don't see how you get the x^2 term
also for ODEs the solution is on an open interval a<x<b but how does it include special cases of the intervals -inf<x<b, a<x<inf, -inf<x<inf; wouldn't the open interval a<x<b exclude -inf<x<b?
thanks very much!
from Kreyszig, for xy'=-y how do you verify the solution y=h(x)=clnx by differentiating
y'=h'(x)=-clnx^2? I don't see how you get the x^2 term
also for ODEs the solution is on an open interval a<x<b but how does it include special cases of the intervals -inf<x<b, a<x<inf, -inf<x<inf; wouldn't the open interval a<x<b exclude -inf<x<b?
thanks very much!