- #1
arierreF
- 79
- 0
I want to calculate [itex]|e^{a^{2} + \frac{it}{m\hbar}}|^{2}[/itex]
i is imaginary unit.
my trie:
[itex]a^{2} + \frac{it}{2m\hbar}[/itex] is a complex number so its module is:
[itex]\sqrt{a^{4} + \frac{t^{2}}{m^{2}\hbar^{2}}}[/itex]
= [itex]\sqrt{a^{4}(1 + \frac{t^{2}}{m^{2}\hbar^{2}a^{4}})}[/itex]
[itex]a^2\sqrt{1 + \frac{t^{2}}{m^{2}\hbar^{2}a^{4}}}[/itex]
So the solution is:
[itex](e^{a^2\sqrt{1 + \frac{t^{2}}{m^{2}\hbar^{2}a^{4}}}})^{2}[/itex]
=
[itex]e^{2a^2\sqrt{1 + \frac{t^{2}}{m^{2}\hbar^{2}a^{4}}}}[/itex]
My friend said that is is definitely wrong. And i actually think that it is wrong.
can somebody tell me where?
i is imaginary unit.
my trie:
[itex]a^{2} + \frac{it}{2m\hbar}[/itex] is a complex number so its module is:
[itex]\sqrt{a^{4} + \frac{t^{2}}{m^{2}\hbar^{2}}}[/itex]
= [itex]\sqrt{a^{4}(1 + \frac{t^{2}}{m^{2}\hbar^{2}a^{4}})}[/itex]
[itex]a^2\sqrt{1 + \frac{t^{2}}{m^{2}\hbar^{2}a^{4}}}[/itex]
So the solution is:
[itex](e^{a^2\sqrt{1 + \frac{t^{2}}{m^{2}\hbar^{2}a^{4}}}})^{2}[/itex]
=
[itex]e^{2a^2\sqrt{1 + \frac{t^{2}}{m^{2}\hbar^{2}a^{4}}}}[/itex]
My friend said that is is definitely wrong. And i actually think that it is wrong.
can somebody tell me where?