- #1
banfina
- 2
- 0
Homework Statement
Given two constants, A and B, what is the energy of the following signal?
[tex]f(t) = A*rect(t) + B*rect(t-0.5)[/tex]
Homework Equations
[tex]E_f = \int_{-\infty}^{\infty} |f(t)|^2[/tex]
The Attempt at a Solution
[tex]E_f = \int_{-\infty}^{\infty} [A*rect(t) + B*rect(t-0.5)]^2 dt[/tex]
[tex]= \int_{-\infty}^{\infty} [A^2*rect^2(t) + 2AB*rect(t)rect(t-0.5) + B^2rect^2(t-0.5)] dt[/tex]
[tex]= A^2\int_{-\infty}^{\infty} rect^2(t) dt + 2AB\int_{-\infty}^{\infty} rect(t)rect(t-0.5) dt + B^2\int_{-\infty}^{\infty} rect^2(t-0.5) dt[/tex]
[tex]= A^2 + 2AB + B^2[/tex]
[tex]= (A + B)^2[/tex]
This seems wrong to me somehow; I guess my real question is does [tex]\int_{-\infty}^{\infty} rect^2(\frac{t}{\tau}) = \tau[/tex]?