- #1
SpY]
- 65
- 0
Homework Statement
Evaluate the integral
[tex]\int\limits_{V=\infty} e^{-r} \left[ \nabla \cdot \frac {\widehat{r}} {r^2} \right] , d^3 x[/tex]
Homework Equations
Divergence theorem:
[tex]\int\limits_{V} \left ( \nabla \cdot A \right ) \, d^3 x
= \oint\limits_{S} A \cdot \, da}
[/tex]
The Attempt at a Solution
I know that I have to apply the div theorem somewhere, but this [tex]e^{-r}[/tex] is confusing and what does it mean if the lower limit V is infinity?
I haven't seen the integral of [tex]\frac{1}{e^r} [/tex] before but I'm kinda guessing
[tex] \int \frac{1}{e^r} \, dr
= \frac{1}{e^r} \int \frac{1}{u} \frac{du}{e^r}
= ln(e^r)
= r
[/tex]
where I used a substitution [tex]u=e^r[/tex] and [tex]du= e^r dr[/tex]
Last edited: