- #1
lyra87
- 1
- 0
Sorry for the other post, I clicked post by mistake
Find the minimum uncertainty in the length of the year
[tex]\Delta[/tex]Px >= [tex]\hbar[/tex]/(2[tex]\Delta[/tex]x
I did:
[tex]\Delta[/tex]t = ((([tex]\Delta[/tex]xt)/x)[tex]^{}2[/tex]+((xm)/[tex]\Delta[/tex]Px)[tex]^{}2[/tex])[tex]^{}.5[/tex]
and then because of the uncertainty principle:
[tex]\Delta[/tex]t =((([tex]\Delta[/tex]xt)/x)[tex]^{}2[/tex]+((2xm[tex]\Delta[/tex]x)/[tex]\hbar[/tex])[tex]^{}2[/tex])[tex]^{}.5[/tex]
then I took the derivative dt/d[tex]\Delta[/tex]x to minimize the function. But [tex]\Delta[/tex]x canceled, and I don't get the correct value for h-bar, so I think I did something wrong.
thanks a lot
Homework Statement
Find the minimum uncertainty in the length of the year
Homework Equations
[tex]\Delta[/tex]Px >= [tex]\hbar[/tex]/(2[tex]\Delta[/tex]x
The Attempt at a Solution
I did:
[tex]\Delta[/tex]t = ((([tex]\Delta[/tex]xt)/x)[tex]^{}2[/tex]+((xm)/[tex]\Delta[/tex]Px)[tex]^{}2[/tex])[tex]^{}.5[/tex]
and then because of the uncertainty principle:
[tex]\Delta[/tex]t =((([tex]\Delta[/tex]xt)/x)[tex]^{}2[/tex]+((2xm[tex]\Delta[/tex]x)/[tex]\hbar[/tex])[tex]^{}2[/tex])[tex]^{}.5[/tex]
then I took the derivative dt/d[tex]\Delta[/tex]x to minimize the function. But [tex]\Delta[/tex]x canceled, and I don't get the correct value for h-bar, so I think I did something wrong.
thanks a lot
Last edited: