- #1
chemic_23
- 44
- 0
Homework Statement
Find the taylor series of f(x)=1/(x)^(1/2) ; a=9
2. The attempt at a solution
f(x) = (x)^(-1/2)
f'(x) = -(1/2)*x^(-3/2)
f''(x) = (1/2)*(3/2)*x^(-5/2)
f'''(x) = -(1/2)*(3/2)*(5/2)*x^(-7/2)
f''''(x) = (1/2)*(3/2)*(5/2)*(7/2)*x^(-11/2)
f(9) = (1/3)
f'(9) = -(1/(3^3))*(1/2)
f''(9) = (1/(3^5))*(1/(2^2))
f'''(9) = -(1/(3^7))*(1/(2^3))
f''''(9) = (1/(3^9))*(1/(2^4))
pluging to the taylor series,
=f(9) + f'(9)*(x-9) + (f"(9)*(x-9)^2)/2! + (f"'(9)*(x-9)^3)/3! + ...
= (1/3) - (1/(3^3))*(1/2)*(x-9) + ((1/(3^5))*(1/(2^2))*(x-9)^2)/2! - ((1/(3^7))*(1/(2^3))*(x-9)^3)/3! +...+ ((-1)^1* (1)(3)(5)...(2n-1)*(x- 9)^n)/((3^(2n+1))*(2^n)*(n!))
=1/3 + sum(n=1 to infinity) ((-1)^n* (1)(3)(5)...(2n-1)*(x-9)^n)/((3^(2n+1))*(2^n)*(n!))
but the answer at the back of the book is sum(n=0 to infinity) ((-1)^n* (1)(3)(5)...(2n-1)*(x-9)^n)/((3^(2n+1))*(2^n)*(n!))
i'm not convinced because when you plug n=0 to ((-1)^n* (1)(3)(5)...(2n-1)*(x 9)^n)/((3^(2n+1))*(2^n)*(n!)),
the first terms turns out to be -1/3 which is negative that is, 2n-1 => 2(0)-1 = -1 which makes 1/3 to be negative. The expanded term above is 1/3 which is positive. Pls can someone explain this? please thanks