- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
The potential energy of a body with mass $ m=3 $ is given by the function $ U(x)=\frac{2}{5}x^5$. Initially the body is at the position $x=0$ and has velocity with metre $1$.
How can I find what kind of motion the body will do??
I have done the following:
$$F=ma=3v'=3x''$$
$$F=-U_x=-2x^4$$
$$3x''=-2x^4 \Rightarrow x''=-\frac{2}{3}x^4$$
$$ x''x'=-\frac{2}{3}x^4 x' $$
$$ \int_0^t x''x' du=-\int_0^t \frac{2}{3}x^4 x' du \Rightarrow \int_0^t \left ( \frac{1}{2} (x')^2 \right )' du=- \int_0^t \left ( \frac{2}{15} x^5 \right )' du \\ \Rightarrow \frac{1}{2} ((x'(t))^2-(x'(0))^2)=-\frac{2}{15} (x^5(t) -x^5(0))\Rightarrow (x'(t))^2-1=-\frac{4}{15}x^5(t) \Rightarrow x'(t)=\pm \sqrt{1-\frac{4}{15}x^5(t)}$$
Is this correct??
How can I conclude from that what kind of motion the body will do?? (Wondering)
Or is there an other way to find this?? (Wondering)
The potential energy of a body with mass $ m=3 $ is given by the function $ U(x)=\frac{2}{5}x^5$. Initially the body is at the position $x=0$ and has velocity with metre $1$.
How can I find what kind of motion the body will do??
I have done the following:
$$F=ma=3v'=3x''$$
$$F=-U_x=-2x^4$$
$$3x''=-2x^4 \Rightarrow x''=-\frac{2}{3}x^4$$
$$ x''x'=-\frac{2}{3}x^4 x' $$
$$ \int_0^t x''x' du=-\int_0^t \frac{2}{3}x^4 x' du \Rightarrow \int_0^t \left ( \frac{1}{2} (x')^2 \right )' du=- \int_0^t \left ( \frac{2}{15} x^5 \right )' du \\ \Rightarrow \frac{1}{2} ((x'(t))^2-(x'(0))^2)=-\frac{2}{15} (x^5(t) -x^5(0))\Rightarrow (x'(t))^2-1=-\frac{4}{15}x^5(t) \Rightarrow x'(t)=\pm \sqrt{1-\frac{4}{15}x^5(t)}$$
Is this correct??
How can I conclude from that what kind of motion the body will do?? (Wondering)
Or is there an other way to find this?? (Wondering)