- #1
- 4,807
- 32
Where is the mistake in these few simple steps ?!
First, I guess that
[tex]\lim_{n\rightarrow \infty}\frac{n}{6^n}=0[/tex]
I'll show it using the definition
[tex]\left|\frac{n}{6^n}\right|<\epsilon \Leftrightarrow \frac{n}{6^n}<\epsilon[/tex]
But, Bernoulli's inequality states that [itex](1+x)^n \geq 1+xn \ \forall x>-1[/itex] and [itex]\forall n \in \mathbb{N}[/itex]. So, with x = 5, I get that
[tex]6^n \geq 1+5n \Rightarrow \frac{n}{6^n}\leq \frac{n}{1+5n}[/tex]
And
[tex]\frac{n}{1+5n} < \epsilon \Leftrightarrow n<\epsilon + 5\epsilon n \Leftrightarrow n> \frac{\epsilon}{1-5\epsilon}[/tex]
So basically, for all n greater than that, the inequality should be satisfied. But this is not so evidently.
First, I guess that
[tex]\lim_{n\rightarrow \infty}\frac{n}{6^n}=0[/tex]
I'll show it using the definition
[tex]\left|\frac{n}{6^n}\right|<\epsilon \Leftrightarrow \frac{n}{6^n}<\epsilon[/tex]
But, Bernoulli's inequality states that [itex](1+x)^n \geq 1+xn \ \forall x>-1[/itex] and [itex]\forall n \in \mathbb{N}[/itex]. So, with x = 5, I get that
[tex]6^n \geq 1+5n \Rightarrow \frac{n}{6^n}\leq \frac{n}{1+5n}[/tex]
And
[tex]\frac{n}{1+5n} < \epsilon \Leftrightarrow n<\epsilon + 5\epsilon n \Leftrightarrow n> \frac{\epsilon}{1-5\epsilon}[/tex]
So basically, for all n greater than that, the inequality should be satisfied. But this is not so evidently.