- #1
jiasyuen
- 25
- 0
\(\displaystyle \int \frac{3x-4}{x(1-x)}dx\)
\(\displaystyle =\int \frac{-4}{x}dx-\int \frac{1}{1-x}dx\)
\(\displaystyle =-4\int \frac{1}{x}dx-\int\frac{1}{1-x}dx\)
\(\displaystyle =-4\ln\left | x \right |-\ln \left | 1-x \right |+c\)
\(\displaystyle \ln \frac{x^4}{\left | 1-x \right |}+c\)
But the correct answer is \(\displaystyle \ln \frac{\left | 1-x \right |}{x^4}+c\).
Where's my mistake?
\(\displaystyle =\int \frac{-4}{x}dx-\int \frac{1}{1-x}dx\)
\(\displaystyle =-4\int \frac{1}{x}dx-\int\frac{1}{1-x}dx\)
\(\displaystyle =-4\ln\left | x \right |-\ln \left | 1-x \right |+c\)
\(\displaystyle \ln \frac{x^4}{\left | 1-x \right |}+c\)
But the correct answer is \(\displaystyle \ln \frac{\left | 1-x \right |}{x^4}+c\).
Where's my mistake?