- #1
agapito
- 49
- 0
In Peter Smith's Godel book, 2 conditions are proven of several that make Q "order adequate"
O2: For any n, Q ⊢ ∀x ({x=0 v x=1 v...v x=n} → x≤n)
03: For any n, Q ⊢ ∀x (x≤ n → {x=0 v x=1 v...v x=n})
O3 is proved by induction. O2 is not. It would appear as if induction would be required in both cases.
Any guidance on why?
Many thanks, am
O2: For any n, Q ⊢ ∀x ({x=0 v x=1 v...v x=n} → x≤n)
03: For any n, Q ⊢ ∀x (x≤ n → {x=0 v x=1 v...v x=n})
O3 is proved by induction. O2 is not. It would appear as if induction would be required in both cases.
Any guidance on why?
Many thanks, am