- #1
complexnumber
- 62
- 0
Homework Statement
Let [tex](X,\mathcal{A},\mu)[/tex] be a fixed measure space.
Let [tex]A_k \in \mathcal{A}[/tex] such that [tex]\displaystyle
\sum^\infty_{k=1} \mu(A_k) < \infty[/tex]. Prove that
[tex]
\begin{align*}
\{ x \in X | x \in A_k \text{ for infinitely many k} \}
\end{align*}
[/tex]
is a null set.
Homework Equations
The Attempt at a Solution
Let [tex]S = \{ x \in X | x \in A_k \text{ for infinitely many k} \}[/tex].
Suppose [tex]\mu (S) > 0[/tex]. Then [tex]\displaystyle \mu(\bigcap A_k) > 0, A_k
\ni x, x \in S[/tex]. Then [tex]\mu (A_k) > 0, A_k \ni x, x \in S[/tex] and hence
[tex]\displaystyle \sum^\infty_{k=1} \mu(A_k) = \infty[/tex], which
contradicts to assumption.
Is this correct?