- #1
jdstokes
- 523
- 1
On p. 32 of Quantum field theory in a nutshell, Zee tries to derive the propagator for a spin 1 field:
[itex]D_{\nu\lambda} = \frac{-g_{\nu\lambda} + k_\nu k_\lambda /m^2}{k^2 - m^2}[/itex]
using the Lorentz invariance of the equation [itex]k^\mu \varepsilon_\mu^{(a)}=0[/itex] where [itex]\varepsilon_\mu^{(a)}[/itex] denotes the three polarization vectors [itex]a = x,y,z[/itex].
I understand that if we have two electromagnetic 4-currents [itex]J_\lambda , J_\nu[/itex], then the amplitude for a particle with momentum [itex]k[/itex] to propagate from one to the other is going to be proportional to
[itex]\sum_{a} \varepsilon_\mu^{(a)}\varepsilon_\lambda^{(a)}[/itex]
which is in turn proportional to the propagator [itex]D_{\nu\lambda}[/itex].
According to Zee, Lorentz invariance as well as [itex]k^\mu \varepsilon_\mu^{(a)}=0[/itex] enfornces the condition that
[itex]\sum_{a} {\varepsilon_\nu}^{(a)}{\varepsilon_\lambda}^{(a)}[/itex]
is proportional to [itex]g_{\nu\lambda} - k_\nu k_\lambda /m^2[/itex] and that evaluating for k at rest with [itex]\nu = \lambda = 1[/itex] changes the sign.
I'm having trouble understanding each step. I apologise for the lengthiness of this question.
1. Why should [itex]\sum_{a} {\varepsilon_\nu}^{(a)}{\varepsilon_\lambda}^{(a)}[/itex] be Lorentz invariant just because [itex]k^\mu \varepsilon_\mu^{(a)}[/itex] is?
2. Why exactly does Lorentz invariance dictate that it must be a linear combination involving only the metric and [itex]k_\nu k_\lambda[/itex]?
3. Why does
[itex]k^\nu{\varepsilon_\lambda}^{(a)} = 0 \implies \sum_{a} \varepsilon_\nu^{(a)}{\varepsilon_\lambda}^{(a)} \propto g_{\nu\lambda} - k_\nu k_\lambda /m^2[/itex]
4. How does ``evaluation of k at rest with [itex]\nu = \lambda = 1[/itex]'' change the sign?
[itex]D_{\nu\lambda} = \frac{-g_{\nu\lambda} + k_\nu k_\lambda /m^2}{k^2 - m^2}[/itex]
using the Lorentz invariance of the equation [itex]k^\mu \varepsilon_\mu^{(a)}=0[/itex] where [itex]\varepsilon_\mu^{(a)}[/itex] denotes the three polarization vectors [itex]a = x,y,z[/itex].
I understand that if we have two electromagnetic 4-currents [itex]J_\lambda , J_\nu[/itex], then the amplitude for a particle with momentum [itex]k[/itex] to propagate from one to the other is going to be proportional to
[itex]\sum_{a} \varepsilon_\mu^{(a)}\varepsilon_\lambda^{(a)}[/itex]
which is in turn proportional to the propagator [itex]D_{\nu\lambda}[/itex].
According to Zee, Lorentz invariance as well as [itex]k^\mu \varepsilon_\mu^{(a)}=0[/itex] enfornces the condition that
[itex]\sum_{a} {\varepsilon_\nu}^{(a)}{\varepsilon_\lambda}^{(a)}[/itex]
is proportional to [itex]g_{\nu\lambda} - k_\nu k_\lambda /m^2[/itex] and that evaluating for k at rest with [itex]\nu = \lambda = 1[/itex] changes the sign.
I'm having trouble understanding each step. I apologise for the lengthiness of this question.
1. Why should [itex]\sum_{a} {\varepsilon_\nu}^{(a)}{\varepsilon_\lambda}^{(a)}[/itex] be Lorentz invariant just because [itex]k^\mu \varepsilon_\mu^{(a)}[/itex] is?
2. Why exactly does Lorentz invariance dictate that it must be a linear combination involving only the metric and [itex]k_\nu k_\lambda[/itex]?
3. Why does
[itex]k^\nu{\varepsilon_\lambda}^{(a)} = 0 \implies \sum_{a} \varepsilon_\nu^{(a)}{\varepsilon_\lambda}^{(a)} \propto g_{\nu\lambda} - k_\nu k_\lambda /m^2[/itex]
4. How does ``evaluation of k at rest with [itex]\nu = \lambda = 1[/itex]'' change the sign?
Last edited: