Path integral formulation

The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.
This formulation has proven crucial to the subsequent development of theoretical physics, because manifest Lorentz covariance (time and space components of quantities enter equations in the same way) is easier to achieve than in the operator formalism of canonical quantization. Unlike previous methods, the path integral allows one to easily change coordinates between very different canonical descriptions of the same quantum system. Another advantage is that it is in practice easier to guess the correct form of the Lagrangian of a theory, which naturally enters the path integrals (for interactions of a certain type, these are coordinate space or Feynman path integrals), than the Hamiltonian. Possible downsides of the approach include that unitarity (this is related to conservation of probability; the probabilities of all physically possible outcomes must add up to one) of the S-matrix is obscure in the formulation. The path-integral approach has been proved to be equivalent to the other formalisms of quantum mechanics and quantum field theory. Thus, by deriving either approach from the other, problems associated with one or the other approach (as exemplified by Lorentz covariance or unitarity) go away.The path integral also relates quantum and stochastic processes, and this provided the basis for the grand synthesis of the 1970s, which unified quantum field theory with the statistical field theory of a fluctuating field near a second-order phase transition. The Schrödinger equation is a diffusion equation with an imaginary diffusion constant, and the path integral is an analytic continuation of a method for summing up all possible random walks.The basic idea of the path integral formulation can be traced back to Norbert Wiener, who introduced the Wiener integral for solving problems in diffusion and Brownian motion. This idea was extended to the use of the Lagrangian in quantum mechanics by Paul Dirac in his 1933 article. The complete method was developed in 1948 by Richard Feynman. Some preliminaries were worked out earlier in his doctoral work under the supervision of John Archibald Wheeler. The original motivation stemmed from the desire to obtain a quantum-mechanical formulation for the Wheeler–Feynman absorber theory using a Lagrangian (rather than a Hamiltonian) as a starting point.

View More On Wikipedia.org
  • 22

    Greg Bernhardt

    A PF Singularity From USA
    • Messages
      19,448
    • Media
      227
    • Reaction score
      10,036
    • Points
      1,237
  • 1

    hyksos

    A PF Atom
    • Messages
      37
    • Reaction score
      12
    • Points
      36
  • 1

    Joker93

    A PF Molecule From Cyprus
    • Messages
      504
    • Reaction score
      36
    • Points
      77
  • 1

    Wizard

    A PF Quark
    • Messages
      11
    • Reaction score
      3
    • Points
      3
  • 1

    nortonian

    A PF Atom
    • Messages
      83
    • Reaction score
      0
    • Points
      34
  • 1

    James1238765

    A PF Quark
    • Messages
      120
    • Reaction score
      8
    • Points
      8
  • 1

    Matta Tanning

    A PF Electron
    • Messages
      7
    • Reaction score
      0
    • Points
      11
  • 1

    "Don't panic!"

    A PF Atom
    • Messages
      601
    • Reaction score
      8
    • Points
      46
  • 1

    greypilgrim

    A PF Cell
    • Messages
      533
    • Reaction score
      36
    • Points
      103
  • 1

    vishal.ng

    A PF Electron From manipur
    • Messages
      2
    • Reaction score
      1
    • Points
      14
  • 1

    Tbonewillsone

    A PF Quark From South East England
    • Messages
      2
    • Reaction score
      0
    • Points
      4
  • 1

    needved

    A PF Atom From Hermosillo
    • Messages
      5
    • Reaction score
      0
    • Points
      35
  • 1

    redtree

    A PF Cell
    • Messages
      294
    • Reaction score
      13
    • Points
      138
  • 1

    LarryS

    Larry Seabrook From Southern California
    • Messages
      349
    • Reaction score
      33
    • Points
      156
  • 1

    stevendaryl

    A PF Star
    • Messages
      8,938
    • Reaction score
      2,945
    • Points
      774
  • 1

    Woolyabyss

    A PF Molecule
    • Messages
      143
    • Reaction score
      1
    • Points
      63
  • 1

    Wledig

    A PF Electron
    • Messages
      69
    • Reaction score
      1
    • Points
      16
  • 1

    Yellotherephysics

    A PF Quark
    • Messages
      2
    • Reaction score
      0
    • Points
      1
  • Back
    Top