Landau's inertial frame logic

  • #1
gionole
281
24
I had an interesting thought.

Let's only look at the free particle scenario.

We derive euler lagrange even without the need to know what exactly ##L## is (whether its a function of kinetic energy or not) - deriving EL still can be done. Though, because in the end, we end up with such EL(##\frac{\partial L}{\partial q} - \frac{d}{dt}\frac{\partial L}{\partial \dot q} = 0##), we see that ##L## couldn't have been a function of ##\dot q## which depends on ##t##, because if ##\dot q## depends on ##t##, euler lagrange couldn't be applied to it as EL derivates ##L## wrt to ##\dot q##.

So at this time, we know ##L## is a function of ##v## in which ##v## doesn't depend on ##t##.

Then Landau tries to come up with what ##L## is. in the ##K'## inertial frame, he shows that ##L' = L(v^2) + \frac{dL}{dv^2}2v\epsilon##. Everything is clear till now, but then he changes ##v## into ##\frac{dr}{dt}##. How can he do that if the initial assumption is that ##v## and ##q## are not a function of ##t## in ##L## ? (I know that adding total time derivative doesn't change EOM, but this question is not about this)
 
Last edited:
Physics news on Phys.org
  • #2
I think I figured out the logic in my head.

By that, he doesn't say that ##L'## is a function of ##v, q## which depend on $t$ - he doesn't say this. He just shows that adding total time derivative doesn't change EOM.
 

Similar threads

Replies
19
Views
1K
  • Classical Physics
Replies
1
Views
622
  • Classical Physics
Replies
21
Views
1K
Replies
1
Views
555
  • Classical Physics
Replies
5
Views
1K
Replies
1
Views
485
Replies
9
Views
709
  • Classical Physics
Replies
7
Views
914
Replies
2
Views
3K
Replies
25
Views
1K
Back
Top