Quantum Mechanics I, finding impuls wavefunction.

  • #1
milkism
118
15
Homework Statement
Find the impuls wavefunction phi(p) from the position wavefunction.
Relevant Equations
Look solution.
I have this following Gaussian wavefunction.
1705233351985.png

I found the constant C to be $$\sqrt{\sqrt{\frac{2 \alpha}{\pi}}}$$.
Now they're asking me to find the normalized impuls wavefunction $$\phi(p)$$. I tried to use the fourier transform relation
$$\phi (p) = \int e^{-\frac{i ( p x)}{\hbar}} \Psi (x,t=0) dx$$
and i got a long answer
$$\sqrt{\sqrt{\frac{2 \alpha}{\pi}}} \sqrt{\frac{\pi}{\alpha}} e^{-\frac{q^2}{4\alpha} + \frac{pq}{2 \alpha \hbar} - \frac{p^2}{4 \alpha \hbar ^2}}$$
Is there an other way to solve this? Because next question is to find the expectation value of position from the normalized impuls wavefunction, which is going to be very hard.
 
Physics news on Phys.org
  • #2
Is there a better way to find impuls wavefunctions from position wavefunctions?
 
  • #3
Any other way will of course give the same result.
 
  • #4
milkism said:
I found the constant C to be
How ? [edit] never mind o:)
milkism said:
Because next question
Can you please post the complete problem statement ?

##\ ##
 
  • #5
BvU said:
How ?
Can you please post the complete problem statement ?

##\ ##
$$\int_{-\infty}^{\infty} \Psi ^{*} \Psi dx =1, \int_{-\infty}^{\infty} C^2 e^{-2 \alpha x^2} dx = C^2 \sqrt{\frac{\pi}{2\alpha}} = 1$$
 
  • Like
Likes BvU
  • #6
Calculate the corresponding normalized wave function φ(p) in momentum space. Explicitly compute, based on the knowledge of φ(p), the expectation value 〈x〉.
 
  • Like
Likes BvU
  • #7
milkism said:
and i got a long answer
##e^{-{1\over 4\alpha}\left(q-p\right )^2}\ ## doesn't look all that bad to me ...
a peak around p = q, so the exercise will probably end up at something moving to the right with momentum ##q##

(did you check there is no ##i## in there ?)

The exercise reminded me of the treatment in Merzbacher, QM 2nd ed (1970 !) chapter 2.2

Next step was $$\psi(x,t) = {1\over \sqrt{2\pi}}\int_{-\infty}^{+\infty} \phi(k) e^{i(kx-\omega t}) dk$$ but I'm too rusty to comfortably work that out ( i.e. ##\omega(k)## )

##\ ##
 
  • Like
Likes PhDeezNutz and milkism

Similar threads

  • Introductory Physics Homework Help
Replies
2
Views
476
  • Introductory Physics Homework Help
Replies
28
Views
408
  • Introductory Physics Homework Help
Replies
5
Views
505
  • Introductory Physics Homework Help
Replies
4
Views
250
  • Introductory Physics Homework Help
3
Replies
97
Views
3K
  • Introductory Physics Homework Help
Replies
2
Views
302
  • Introductory Physics Homework Help
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
7
Views
3K
  • Introductory Physics Homework Help
Replies
10
Views
1K
  • Introductory Physics Homework Help
Replies
1
Views
718
Back
Top