Tensor form of linear Hooke's law with E and v

  • Engineering
  • Thread starter miraboreasu
  • Start date
  • Tags
    Tensor notation
In summary: Start with $$\sigma_{xx}=\frac{E}{(1+\nu)(1-2\nu)}[(1-\nu)\epsilon_{xx}+\nu\epsilon_{yy}+\nu\epsilon_{zz}]$$Rewrite this as :$$\sigma_{xx}=\frac{E}{(1+\nu)(1-2\nu)}[(1-2\nu)\epsilon_{xx}+\nu(\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz})]$$$$=\frac{E}{(1+\nu)}\epsil
  • #1
miraboreasu
24
0
Homework Statement
Rewrite the linear Hooke's law with E and v
Relevant Equations
Linear Hooke's law
Actually, this is not homework, but I think I need help like homework. It was raised from the notice that there is no tensor form of linear Hooke's law in terms of Young's modulus E, and Poission's ratio, v. For example, if we use lame parameters, we have G, \lambda, like
1689866396660.png


The linear Hooke's law (vector-matrix form) is
1689866818129.png

(https://physics.stackexchange.com/q...-materials-makes-stress-undefined-in-hookes-l)

I tried to just use the relationship like:
E=
1689866498147.png


v =
1689866510947.png


but, it ends up with an equation with 2 roots (the first eq for get G= f (E)), so I think I need help about write the notation form directly from the vector-matrix form of the linear Hooke's law
 
Last edited:
Physics news on Phys.org
  • #2
Start with $$\sigma_{xx}=\frac{E}{(1+\nu)(1-2\nu)}[(1-\nu)\epsilon_{xx}+\nu\epsilon_{yy}+\nu\epsilon_{zz}]$$Rewrite this as :$$\sigma_{xx}=\frac{E}{(1+\nu)(1-2\nu)}[(1-2\nu)\epsilon_{xx}+\nu(\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz})]$$$$=\frac{E}{(1+\nu)}\epsilon _{xx}+\frac{E\nu}{(1+\nu)(1-2\nu)}(\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz})$$$$=2G\epsilon_{xx}+\lambda (\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz})$$
 
  • #3
Chestermiller said:
Start with $$\sigma_{xx}=\frac{E}{(1+\nu)(1-2\nu)}[(1-\nu)\epsilon_{xx}+\nu\epsilon_{yy}+\nu\epsilon_{zz}]$$Rewrite this as :$$\sigma_{xx}=\frac{E}{(1+\nu)(1-2\nu)}[(1-2\nu)\epsilon_{xx}+\nu(\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz})]$$$$=\frac{E}{(1+\nu)}\epsilon _{xx}+\frac{E\nu}{(1+\nu)(1-2\nu)}(\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz})$$$$=2G\epsilon_{xx}+\lambda (\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz})$$
Thank you, but sorry I didn't get it, how can I rewrite the vector-matrix form into the form like 2.9. I mean use tensor product, I, to represent the following
1689879602534.png
 
  • #4
miraboreasu said:
Thank you, but sorry I didn't get it, how can I rewrite the vector-matrix form into the form like 2.9. I mean use tensor product, I, to represent the following
View attachment 329468
Look at my equation again. It’s too easy. You have:$$G=\frac{E}{2(1+\nu)}$$and $$\lambda=\frac{E\nu}{(1+\nu)(1-2\nu)}$$
 

Similar threads

  • Linear and Abstract Algebra
Replies
1
Views
837
  • Differential Geometry
Replies
7
Views
2K
  • Special and General Relativity
Replies
4
Views
137
  • Engineering and Comp Sci Homework Help
Replies
3
Views
2K
  • Advanced Physics Homework Help
Replies
5
Views
2K
  • Linear and Abstract Algebra
Replies
2
Views
949
  • Special and General Relativity
Replies
10
Views
2K
  • Linear and Abstract Algebra
Replies
2
Views
1K
Replies
23
Views
3K
Replies
1
Views
2K
Back
Top