Why does ##u## need to be small to represent the Taylor expansion

In summary: So, although the function is not continuous at ##x=p##, the Taylor series for ##f## does converge to a value at ##x=p##.
  • #1
Reuben_Leib
6
1
TL;DR Summary
Taylor series
Necessary condition for a curve to provide a weak extremum.
Let ##x(t)## be the extremum curve.
Let ##x=x(t,u) = x(t) + u\eta(t)## be the curve with variation in the neighbourhood of ##(\varepsilon,\varepsilon')##.
Let $$I(u) = \int^b_aL(t,x(t,u),\dot{x}(t,u))dt = \int^b_aL(t,x(t) + u\eta(t),\dot{x}(t) + u\dot{\eta}(t))dt$$
"Taylor’s theorem indicates that, for ##u## sufficiently small, ##I(u)## can be represented by"
$$I(u) = I(0) + u \left(\frac{\textrm{d}I}{\textrm{d}u}\right)_{u=0} + O(u^2)$$
My question is: Why does ##u## need to be small to represent the Taylor expansion of ##I(u)##? doesn't the Taylor series work for any size ##u##?
 
Physics news on Phys.org
  • #2
Reuben_Leib said:
My question is: Why does ##u## need to be small to represent the Taylor expansion of ##I(u)##? doesn't the Taylor series work for any size ##u##?
It does, but then you will not be able to ignore "##+O(u^2)##" because the higher order terms will become significant relative to the zeroth and first order terms.
 
  • Like
Likes vanhees71
  • #3
If you take the series expansion to infinite order then yes, it will work for any size ##u##. But in this case you are taking only the first term in the expansion, so this will deviate from the original function with errors of order ##O(u^2)##. Those will only be small if ##u## is small.
 
  • #4
Reuben_Leib said:
My question is: Why does ##u## need to be small to represent the Taylor expansion of ##I(u)##? doesn't the Taylor series work for any size ##u##?

Yes, it does.

Where did you read it? Small values of ##u## are the second nature of physicists if they read, write, or hear Taylor. It is usually applied to discover linear approximations, i.e. you need small, neglectable values for ##u^n \;(n>1).##

There is simply not much use of the series for ##u\gg 0.## Furthermore, note that differentiation is a local quality. Differentiable in a neighborhood of ##0## means in a very small radius around ##0.## So we are already limited to a local phenomenon. Why does it make sense to have local behavior in the derivative terms and global in the stretching terms? But yes, formally, there is no restriction for calling the series a Taylor series. However, there is something "small" if we write down the theorem:

Let ##f:I\longrightarrow \mathbb{R}## be a ##n## times continuously differentiable function, and ##p\in I,## Then we have for all ##x\in I##
$$
f(x)=\sum_{k=0}^n \dfrac{f^{(k)}(p)}{k!}\,(x-p)^k + \eta(x)(x-p)^n
$$
where ##\displaystyle{\lim_{x\to p}\eta(x)=0.}##

The estimation for the remainder term converges to zero.
 
  • Like
Likes vanhees71 and Reuben_Leib

Similar threads

Replies
3
Views
602
  • Classical Physics
Replies
1
Views
621
Replies
5
Views
842
  • Classical Physics
Replies
0
Views
227
Replies
19
Views
1K
Replies
11
Views
2K
Replies
33
Views
2K
  • Differential Equations
Replies
7
Views
441
Replies
1
Views
2K
Replies
3
Views
9K
Back
Top