- #1
- 24,775
- 792
We are in a Schwarzschild black hole--T or F?
What I am wondering is WHO HERE THINKS WE ARE IN A SCHWARZSCHILD BLACK HOLE where the black hole event horizon coincides with one of the two well-known cosmology horizons?
There are a couple of well-known horizon radii that we hear about a bunch:
the Hubble radius
this is c/H0 and is the distance at which normal recession speed is c.
If I remember right, something around 13.5 billion LY, current distance.
(the radius of the Hubble sphere, as sometimes called)
the radius of the cosmological event horizon
In past years we've discussed this at PF quite a lot. I recall reading about it in Lineweaver's excellent 2003 paper, where one of the figures shows it as around 16 billion LY. Events that occur today outside the cosmological event horizon cannot ever affect us.
We are out of causal contact with current events at that distance---ASSUMING the LCDM model with its constant positive Lambda.
If Lambda is really zero and the present small positive measured value is an artifact, then the cosmological event horizon would not exist---events that occur today at arbitrarily large distances could eventually affect us, light from them could eventually reach us etc. But the LCDM model has this interesting feature (which Lineweaver 2003 presents in a nice clear treatment.)
I guess either radius could be called a "cosmic horizon" although this runs a risk of confusion because it wouldn't necessarily be clear which of the two was meant.
There were a couple of recent papers by Melia where he used that term. My impression was that he means the Hubble radius, but I could be wrong.
Anyway, I get the impression that some people think the universe inside one of these horizons is a Schwarzschild black hole and that the horizon, whichever one is meant, is the BLACK HOLE EVENT HORIZON of the black hole that we are in. This never occurred to me to imagine, and it simply does not make sense to me. But because similar WORDS are used I guess people can get the idea. Or maybe there is more to it, that I don't understand!
So here's the poll. Are we in a black hole?
What I am wondering is WHO HERE THINKS WE ARE IN A SCHWARZSCHILD BLACK HOLE where the black hole event horizon coincides with one of the two well-known cosmology horizons?
There are a couple of well-known horizon radii that we hear about a bunch:
the Hubble radius
this is c/H0 and is the distance at which normal recession speed is c.
If I remember right, something around 13.5 billion LY, current distance.
(the radius of the Hubble sphere, as sometimes called)
the radius of the cosmological event horizon
In past years we've discussed this at PF quite a lot. I recall reading about it in Lineweaver's excellent 2003 paper, where one of the figures shows it as around 16 billion LY. Events that occur today outside the cosmological event horizon cannot ever affect us.
We are out of causal contact with current events at that distance---ASSUMING the LCDM model with its constant positive Lambda.
If Lambda is really zero and the present small positive measured value is an artifact, then the cosmological event horizon would not exist---events that occur today at arbitrarily large distances could eventually affect us, light from them could eventually reach us etc. But the LCDM model has this interesting feature (which Lineweaver 2003 presents in a nice clear treatment.)
I guess either radius could be called a "cosmic horizon" although this runs a risk of confusion because it wouldn't necessarily be clear which of the two was meant.
There were a couple of recent papers by Melia where he used that term. My impression was that he means the Hubble radius, but I could be wrong.
Anyway, I get the impression that some people think the universe inside one of these horizons is a Schwarzschild black hole and that the horizon, whichever one is meant, is the BLACK HOLE EVENT HORIZON of the black hole that we are in. This never occurred to me to imagine, and it simply does not make sense to me. But because similar WORDS are used I guess people can get the idea. Or maybe there is more to it, that I don't understand!
So here's the poll. Are we in a black hole?