How about this?
Let z\in\mathbb{C} be a primitive n-th root of unity. Then, for n\in\mathbb{N} and k\in\mathbb{Z} s.t. 0<k<n ,z^{n}=1 and z^{k}\neq1. Suppose k and n are not coprime. Then, \exists s\in\mathbb{N} s.t. n=sn' and k=sk' for some k'\in\mathbb{Z},n'\in\mathbb{N}. Then...