sorry. i didn't mean it like that. I will be using a safety factor. it's just i believe it to be already there. built in by never even coming close to the max load. i don't mean that i don't need one.
here is what i have
33000(psi)=((1.5in)(q)(96in)^2))/((8)(3.495)) = 66.74lb/in...
1) I have not done calculations like these in years, but I'm still vaguely familiar.
2) it's a rack that has been used for 20yrs and someone decided to do some calculations on it. It is actually much beefier than i have stated. it has angle welded inside the tubes. I'm also doing the...
where did the 275 mpa come from? searched for a chart but didn't find one. Is this where the beam goes from elastic to plastic bending? I don't think i need to incorporate the safety factor in this calculation because I'm not planning on getting any were near the max "q" I just need to know what...
i'm not sure what to use for x in your equations. I tried x=48" (first equations = 0 in this case) and tried x=0" but that still left me with 4 unknowns and 3 equations. i didn't have V, M, w, or d(deflection)
Honestly I've been looking at this for a long time. giving my more equations to...
I'm trying to calculate the max load of a rack made of 3X3X1/4 steel tube. It is 8ft long and 4ft wide. I just want to calculate the max load (distributed load) in bending cross the 8ft and also in compression for the legs. i can't find the right formulas. can anyone help?
so far i what i...
I'm not sure if that is what I'm looking for. I need to know how much weight i can put on this rack (distributed load). i don't know if that that be yield strength or what? i want to assume fix ends on an 8ft square tube (actually 2 8ft tubes parallel).
I'm trying to calculate the max load of a rack made of 3X3X1/4 steel tube. It is 8ft long and 4ft wide. I just want to calculate the max load (distributed load) in bending (prob for just the 8ft sides) and also in compression for the legs. i can't find the right formulas. can anyone help?
so...