Hi Everyone.
There is an equation which I have known for a long time but quite never used really. Now I have doubts I really understand it. Consider the unitary operator implementing a Lorentz transformation. Many books show the following equation for vector fields:
U(\Lambda)^{-1}A^\mu...
As far as I know, a lagrangian term is not perturbatively renormalizable if it involves a coupling with negative mass dimension.
Like it happens for gravity or the Fermi model of weak interactions, which works as an effective theory with an energy cutoff.
Possibly very silly question in QFT. Consider the Lagrangian for a scalar field theory.
A term like
g/φ^2
should be renormalizable on power counting arguments. The mass dimension of g should be
2 (D-1)
where D is the number of space-time dimensions.Does this make sense?