thanks for the reply
Should u and v be [0,pi/2],[0,4] respectively ?
thus, the integration is
\int_{0}^{4}\int_{0}^{\frac{\pi}{2}} (4cosu,2sinu,v)\cdot (2cosu,4sinu,0) dudv
=\int_{0}^{4}\int_{0}^{\frac{\pi}{2}} (8cos^{2}u+8sin^{2}u)dudv
For the second part,
If I use the shperical coordinate...