- #36
Orion1
- 973
- 3
Neutron average density:
[tex]\boxed{\rho_n = \frac{3}{4 \cdot 10^3 \pi N_A r_0^3}}[/tex]
Neutron star core density:
[tex]\boxed{\rho_c = \rho_n}[/tex]
Integration by substitution:
[tex]\frac{dP}{dr} = - \left[ \frac{3^{2/3} \pi^{4/3} \hbar^2}{5 m_n^{8/3}} \left( \left( \frac{3}{4 \cdot 10^3 \pi N_A r_0^3} \right) \left[1 - \left( \frac{r}{R} \right)^2 \right] \right)^{5/3} + \left( \frac{3}{4 \cdot 10^3 \pi N_A r_0^3} \right) c^2 \left[1 - \left( \frac{r}{R} \right)^2 \right] \right]...[/tex]
[tex]...\left[ \left( \frac{4 \cdot 3^{2/3} \pi^{7/3} \hbar^2 G r^3}{5 c^4 m_n^{8/3}} \left( \left( \frac{3}{4 \cdot 10^3 \pi N_A r_0^3} \right) \left[1 - \left( \frac{r}{R} \right)^2 \right] \right)^{5/3} \right) + \frac{4 \pi G }{15 c^2} \left( \frac{3}{4 \cdot 10^3 \pi N_A r_0^3} \right) \left( \frac{3r^5}{R^2} + 2R^3 - 5r^3 \right) \right]...[/tex]
[tex]... \left[ r \left( r - \frac{4 \pi G}{15 c^2} \left( \frac{3}{4 \cdot 10^3 \pi N_A r_0^3} \right)} \left( \frac{3r^5}{R^2} + 2R^3 - 5r^3 \right) \right) \right]^{-1}[/tex]
Degenerate Fermi-TOV equation solution VII:
[tex]\frac{dP}{dr} = - \left[ \frac{9 \hbar^2 }{4 \cdot 10^6 m_n^{\frac{8}{3}}} \left( \frac{3}{2 \pi} \right)^{\frac{1}{3}} \left( \frac{1}{N_A r_0^3} \right)^{\frac{5}{3}} \left[1 - \left( \frac{r}{R} \right)^2 \right]^{5/3} + \frac{3 c^2}{4 \cdot 10^3 \pi N_A r_0^3} \left[1 - \left( \frac{r}{R} \right)^2 \right] \right]...[/tex]
[tex]...\left[ \frac{9 \pi^{\frac{2}{3}} \hbar^2 G r^3}{10^6 c^4 m_n^{\frac{8}{3}}} \left( \frac{3}{2} \right)^{\frac{1}{3}} \left( \frac{1}{N_A r_0^3} \right)^{\frac{5}{3}} \left[1 - \left( \frac{r}{R} \right)^2 \right]^{5/3} + \frac{G}{5 \cdot 10^3 c^2 N_A r_0^3} \left( \frac{3r^5}{R^2} + 2R^3 - 5r^3 \right) \right]...[/tex]
[tex]... \left[ r \left( r - \frac{G}{5 \cdot 10^3 c^2 N_A r_0^3} \left( \frac{3r^5}{R^2} + 2R^3 - 5r^3 \right) \right) \right]^{-1}[/tex]
Last edited: