- #1
Red Fox
- 23
- 0
I think about general relativity often, specifically about the curvature of spacetime in the presence of matter (gravity). For a while, I understood much of this concept, but certain things escaped me: when objects are moving, it is easy to see how curved space causes matter to move in the way it does; however, it is difficult for me to understand why an object that is in relative state of "rest" would move if another stationary mass was introduced. Then I realized that thinking of matter's effect on space time as simply a "curvature" may not be an entirely accurate analogy. For me, "curved" space implies only that what would be a straight line or path in space is now bent to some degree. If this were the case, i would only make sense for an object to be effected if it is moving relative to the mass causing the curvature, but as we know, gravity effects matter in all forms of relative motion. If you change the description from curvature to distortion, or some other, more suitable adjective, it would describe and relate to what we observe much better. I am not by any means an expert in this area, and i would like to know what others thoughts on my little pseudo approach to this concept are.