- #1
zanick
- 383
- 23
We have some unbelievable discussions regarding the acceleration of race cars.
At first glance, many just look at what they remember, F=ma and go on long rants regarding engines that have high levels of torque. However, even when you rearrange the term to a=F/m, its still a Force at the tires that causes acceleration, not at the engine before the gear box.
Many different types of race cars have all sorts of engines. some with high torque and some with low torque, even some of those might have equal HP output. Since HP is a rate of doing work, a rate of change of kinetic energy, if a two cars were to be compared and both had the same HP, yet one had half the torque output, if their HP curve shapes were the same, the rate of acceleration at any vehicle speed would be the same. Correct?
This rate of acceleration is proportional to Power at any vehicle speed. (all other things being equal, such as the car's weight, speed)
Acceleration=Power/(mass x velocity)
Can you guys here enlighten the folks in the racing community regarding equations for acceleration of a race car and the relationship of their engines torque output to the torque and force found a the wheels to accelerate it at any vehicle speed, anywhere on the track.
I posted a set of engine HP/torque curves that showed that even with lower engine torque values, one engine can produce more rear wheel torque and force at any speed, because its HP curve was boader. Not the rule, but the exception that a good percentage of the racing community cannot accept.
Here is the graph that was posted based on the original question, "What would be better on the race track if the two engines in question, both had the same HP but one had more torque than the other. " From the data provided from this person posing the question, I put it in a graph and looked like as follows:
At first glance, many just look at what they remember, F=ma and go on long rants regarding engines that have high levels of torque. However, even when you rearrange the term to a=F/m, its still a Force at the tires that causes acceleration, not at the engine before the gear box.
Many different types of race cars have all sorts of engines. some with high torque and some with low torque, even some of those might have equal HP output. Since HP is a rate of doing work, a rate of change of kinetic energy, if a two cars were to be compared and both had the same HP, yet one had half the torque output, if their HP curve shapes were the same, the rate of acceleration at any vehicle speed would be the same. Correct?
This rate of acceleration is proportional to Power at any vehicle speed. (all other things being equal, such as the car's weight, speed)
Acceleration=Power/(mass x velocity)
Can you guys here enlighten the folks in the racing community regarding equations for acceleration of a race car and the relationship of their engines torque output to the torque and force found a the wheels to accelerate it at any vehicle speed, anywhere on the track.
I posted a set of engine HP/torque curves that showed that even with lower engine torque values, one engine can produce more rear wheel torque and force at any speed, because its HP curve was boader. Not the rule, but the exception that a good percentage of the racing community cannot accept.
Here is the graph that was posted based on the original question, "What would be better on the race track if the two engines in question, both had the same HP but one had more torque than the other. " From the data provided from this person posing the question, I put it in a graph and looked like as follows: