- #1
Gerenuk
- 1,034
- 5
Why is it that kinetic energy is conserved - for example during collisions?
Or can one prove in general that for
[tex]
m_1\frac{\mathrm{d}v_1}{\mathrm{d}t}=\frac{\alpha(\vec{s}_2-\vec{s}_1)}{|\vec{s}_1-\vec{s}_2|^3}
[/tex]
[tex]
m_2\frac{\mathrm{d}v_2}{\mathrm{d}t}=\frac{\alpha(\vec{s}_1-\vec{s}_2)}{|\vec{s}_1-\vec{s}_2|^3}
[/tex]
the term
[tex]
m_1\frac{v_1^2}{2}+m_2\frac{v_2^2}{2}-\frac{\alpha}{|\vec{s}_1-\vec{s}_2|}
[/tex]
is conserved?
Or can one prove in general that for
[tex]
m_1\frac{\mathrm{d}v_1}{\mathrm{d}t}=\frac{\alpha(\vec{s}_2-\vec{s}_1)}{|\vec{s}_1-\vec{s}_2|^3}
[/tex]
[tex]
m_2\frac{\mathrm{d}v_2}{\mathrm{d}t}=\frac{\alpha(\vec{s}_1-\vec{s}_2)}{|\vec{s}_1-\vec{s}_2|^3}
[/tex]
the term
[tex]
m_1\frac{v_1^2}{2}+m_2\frac{v_2^2}{2}-\frac{\alpha}{|\vec{s}_1-\vec{s}_2|}
[/tex]
is conserved?