- #316
Polestar101
- 27
- 0
Garth said:The aberration of starlight is clearly observed as predicted and provides the natural system calibration, over both orbital (the satelite's) and annual (the Earth's) orbits.
Garth – It is true that the steady signal from the ~5” aberration of light from the spacecraft ’s 91 minute orbit around the Earth served as a useful calibration tool. The less frequent ~20” aberration (due to the earth’s orbit around the sun) was hardly helpful at all because the periodicity during the allotted time for the experiment was less than 2x and because the incoming GP-B data was broken up so many times (with stops and starts and recalibrations along the way).
But perhaps the biggest blunder of the experiment was failure to account for the moving frame of the solar system. The aberration of light from this effect is large (larger than the diurnal or annual figures and larger than the relativity effects) but looks like drift and is still unquantified because there is still large uncertainty about the exact speed and exact motions of the SS (it may have several). I do not blame the current program scientists for this problem as it was unforeseen by the original designers of the experiment (note the complete absence of any mention of this effect in the literature).
Garth said:Having come this far it would be madness not to complete the data reduction, which is being done through private funding, and the published raw data could provide a mine for others to dig into for years to come - that is if anybody else will be bothered to do so!
I agree it would be great to thoughtfully take apart and quantify every single signal recorded by GP-B. However, the current team is so focused on finding the relativity effects I believe they are missing the discovery of some very important science about the motion of the solar system. Unintentional bias is hard to get away from in an experiment of this type.
Polhode motion is an extremely tricky thing to quantify and predict (no paper supports its prediction with this many variables). In their attempts to cancel it out the GP-B team is probably throwing out vital information about the moving solar system (all in an effort to find the relativity effects). Personally, I doubt if there was any meaningful polhode motion (think about it - those gyros were pretty darn perfect – and polhode is exactly the sort of thing they were designed to avoid!). Most of the “noise” is likely motion of the frame of the SS, and possibly, motion of our local star group relative to the guide star.
GP-B is a unique experiment. No doubt some day someone will look at the data with a completely virgin mind and reveal key information about the moving solar system. Until then I hope the data is well preserved for future generations.
Walter