- #1
RoyLB
- 23
- 0
I have a pedagogical question, and a philosophical question, both involving energy:
1) All the derivations I’ve ever seen of kinetic energy in both elementary and advanced texts (or in Physics Forum searches) either simply define T=1/2mv^2 or start by taking the dot product of force and distance. Once either of these steps are done, it’s just a matter of mathematics to get to the work energy theorem. However, pedagogically speaking, both approaches seem forced (if you’ll pardon the pun). Do you know of a more natural way to introduce and motivate the idea of (mechanical) energy? I assume it is natural to start from F=ma, since the non-expert can grasp the concepts of forces, masses, and accelerations pretty easily, especially after some simple experiments.
2) What exactly is energy, anyway? Since work involves a dot product, can it be considered the component of something? If so, what? I suspect that one might need to resort to relativity and/or thermodynamics to get the true picture of what energy is, not unlike how Least Action in classical physics can be “explained” by resorting to
quantum physical considerations
(see http://www.eftaylor.com/pub/QMtoNewtonsLaws.pdf)
Direct answers or pointers to relevant references would be appreciated.
Thanks!
Roy
1) All the derivations I’ve ever seen of kinetic energy in both elementary and advanced texts (or in Physics Forum searches) either simply define T=1/2mv^2 or start by taking the dot product of force and distance. Once either of these steps are done, it’s just a matter of mathematics to get to the work energy theorem. However, pedagogically speaking, both approaches seem forced (if you’ll pardon the pun). Do you know of a more natural way to introduce and motivate the idea of (mechanical) energy? I assume it is natural to start from F=ma, since the non-expert can grasp the concepts of forces, masses, and accelerations pretty easily, especially after some simple experiments.
2) What exactly is energy, anyway? Since work involves a dot product, can it be considered the component of something? If so, what? I suspect that one might need to resort to relativity and/or thermodynamics to get the true picture of what energy is, not unlike how Least Action in classical physics can be “explained” by resorting to
quantum physical considerations
(see http://www.eftaylor.com/pub/QMtoNewtonsLaws.pdf)
Direct answers or pointers to relevant references would be appreciated.
Thanks!
Roy