- #71
Sammywu
- 273
- 0
Because { [tex] u_n_i [/tex] } spans the Hilbert space, any u can be expressed as:
[tex] \sum_n \sum_i c_n_i u_n_i [/tex]
[tex] \sum_n P_n ( \sum_j \sum_i c_j_i u_j_i ) = [/tex]
[tex] \sum_n \sum_j \sum_i c_j_i P_n ( u_j_i ) = [/tex]
( because
[tex] P_n ( u_j_i ) = u_n_i [/tex]
when n =j,
[tex] P_n ( u_j_i ) = 0 [/tex]
when n , j not equal,
)
[tex] \sum_n \sum_i c_n_i u_n_i [/tex]
That takes care of
[tex] \sum P_n = I [/tex]
.
[tex] \sum_n \sum_i c_n_i u_n_i [/tex]
[tex] \sum_n P_n ( \sum_j \sum_i c_j_i u_j_i ) = [/tex]
[tex] \sum_n \sum_j \sum_i c_j_i P_n ( u_j_i ) = [/tex]
( because
[tex] P_n ( u_j_i ) = u_n_i [/tex]
when n =j,
[tex] P_n ( u_j_i ) = 0 [/tex]
when n , j not equal,
)
[tex] \sum_n \sum_i c_n_i u_n_i [/tex]
That takes care of
[tex] \sum P_n = I [/tex]
.