- #1
usernamer
- 7
- 0
ok - i do understand roughly what their purpose is, i think that if you have an object, a traveling at half the speed of light with constant velocity relative to another object, b which is at rest for 2 seconds, then, due to the effects of time dilation, the clock of a will slow so they actually travel for root 3 (or 1.73) seconds. However, you could consider either object to be at rest, surely, so how would you work out which object's clock would move slower (i.e. b is moving at half the speed of light in the opposite direction relative to a which could also be considered to be at rest)? Or would both objects think the clock of the other object is moving slower, since relative to them, the other object is moving at half the speed of light (in one direction or another), which would probably raise more questions...
hmm - i think i get this part now, but still don't get the length contraction bit below so any help with that would be great
Also, when i sub in values for the length contraction equation, i just get 0.
On the top, i get... 1 (light second traveled) - 0.5 (light seconds / second) * 2 (seconds) which = 0. Am i subbing in a value wrong or something? Should x be the length of the object to find out its length contraction, x prime, or something? Even if that is right, if the object was 1 light second long then why would it have 0 length? Knowing me, I've probably just done something stupid, though
Cheers
hmm - i think i get this part now, but still don't get the length contraction bit below so any help with that would be great
Also, when i sub in values for the length contraction equation, i just get 0.
On the top, i get... 1 (light second traveled) - 0.5 (light seconds / second) * 2 (seconds) which = 0. Am i subbing in a value wrong or something? Should x be the length of the object to find out its length contraction, x prime, or something? Even if that is right, if the object was 1 light second long then why would it have 0 length? Knowing me, I've probably just done something stupid, though
Cheers
Last edited: