- #1
jeff1evesque
- 312
- 0
I am reading (theorem 2.14) from a textbook, and don't understand how g = Tf and (#1) line of reasoning. The theorem and proof is as follows:
Theorem 2.14: Let V and W be finite-dimensional vector spaces having ordered bases B and C, respectively, and let T: V-->W be linear. Then, for each u in V, we have
[T(u)]C = [T]BCB.
Proof: Fix u in V, and define the linear transformations f: F --> V by f(a) = au and
g: F-->W by g(a) = aT(u) for all a in F. Let A = {1} be the standard
ordered basis for F. Notice that g = Tf.. Identifying
column vectors as matrices and using Theorem 2.11, we obtain
(#1) [T(u)]C = [g(1)]C = [g]AC = [Tf]AC = [T]BC[f]AB = [T]BC[f(1)]B = [T]BCB.
-------------------------------
Theorem 2.11: Let V, W, and Z be finite-dimensional vector spaces with ordered bases, A,B, and C, respectively. Let T: V-->W and U: W-->Z be linear transformations. Then
[UT]AC = BC[T]AB
Theorem 2.14: Let V and W be finite-dimensional vector spaces having ordered bases B and C, respectively, and let T: V-->W be linear. Then, for each u in V, we have
[T(u)]C = [T]BCB.
Proof: Fix u in V, and define the linear transformations f: F --> V by f(a) = au and
g: F-->W by g(a) = aT(u) for all a in F. Let A = {1} be the standard
ordered basis for F. Notice that g = Tf.. Identifying
column vectors as matrices and using Theorem 2.11, we obtain
(#1) [T(u)]C = [g(1)]C = [g]AC = [Tf]AC = [T]BC[f]AB = [T]BC[f(1)]B = [T]BCB.
-------------------------------
Theorem 2.11: Let V, W, and Z be finite-dimensional vector spaces with ordered bases, A,B, and C, respectively. Let T: V-->W and U: W-->Z be linear transformations. Then
[UT]AC = BC[T]AB