What additional role |p> play here?

  • Thread starter Neitrino
  • Start date
In summary: B at t1. We do this by considering the "propagator" which is the operator that takes the Heisenberg state and spreads it out in space:|B-heisenberg> = U(t0,t1) |B> + <0|\phi(y)|0> So, in summary, the amplitude for our system to be in state B at t1 is: amplitude = <B| U(t0,t1) |B> + <0|\phi(y)|0>.
  • #1
Neitrino
137
0
Gents pls help me on the below since I am confused and getting frustrated :confused:

suppose QM system is characterized by this expression [tex] \int dp \ e^{-ipx} |p> [/tex]
So how do i interpret it - one the one hand since that expression is |x>, I guess I say that my system is in ket state |x> and the observable which describes this system (position in this case) has eigenvalue x. Briefly if thinking about particle I say this particle is at position x.

on the other hand it is a superposition of plane waves exp(-ipx) and superposition of some |p> ket states right? I can no attach these two ideas - on the one hand particle at position x, on the other hand superposition of plane waves (free particle which has any momentum SOMEWHERE in space)

And what additional role |p> play here? (except with exp(-ipx) it gives me |x> )

Any response much appreciated
 
Physics news on Phys.org
  • #2
Roughly, the set of all [itex]\left| p \right>[/itex] is a complete set of states, so

[tex]
1 = \int dp \ \left|p \right> \left< p \right|,
[/tex]

and

[tex]
\left|x \right> = \int dp \ \left|p \right> \left< p \right| \left x \right>.
[/tex]

Regards,
George
 
  • #3
Besides the above questions i have another question: if [tex] \phi(x)|0> [/tex] describes the creation of a particle at position x being in a superposition state of momentum and then its propagation/spread in all over space and if [tex]<0|\phi(y)[/tex] describes the same (particle birth at position y and its propagation in all over space) how/why does [tex] <0|\phi(y)\phi(x)|0> [/tex]describe particle propagation from x to y ?
 
  • #4
Nope, it doesn't.

[tex] \left\langle 0 | \hat{T}\left(\hat{\phi} (x_{1})\hat{\phi} (x_{2})\right) |0\right\rangle =\mathcal{G}^{(2)}_{0} (x_{1},x_{2})=i\Delta_{F} (x_{1}-x_{2}) [/tex]

This is the propagator.

Daniel.
 
  • #5
ou sorry, seems I was no quite precise. I wanted to say if this is correct
Neitrino said:
[tex] \phi(x)|0> [/tex] describes the creation of a particle at position x being in a superposition state of momentum and then its propagation/spread in all over space and if [tex]<0|\phi(y)[/tex] describes the same (particle birth at position y and its propagation in all over space)
how/why [tex] <0|\phi(y)\phi(x)|0> [/tex]
is the expresion for apmlitude for a particle to prapagate from x to y. Because if partcicle emerged at position x ( ([tex] \phi(x)|0> [/tex] )and having momentum superposition state it just "flown" in oll over space and the same didi particle at position y. Why/how in this amplitude expresion [tex] <0|\phi(y)\phi(x)|0> [/tex] it "runs" from x to y? (emerged at position x it spread in all over space not particulary to position y)In Peskin Schroeder in the chapter Casuality is said - "the amplitude for a particle to prapagete from x to y is [tex] <0|\phi(y)\phi(x)|0> [/tex]"
 
  • #6
Neitrino said:
ou sorry, seems I was no quite precise. I wanted to say if this is correct how/why [tex] <0|\phi(y)\phi(x)|0> [/tex]
is the expresion for apmlitude for a particle to prapagate from x to y. Because if partcicle emerged at position x ( ([tex] \phi(x)|0> [/tex] )and having momentum superposition state it just "flown" in oll over space and the same didi particle at position y. Why/how in this amplitude expresion [tex] <0|\phi(y)\phi(x)|0> [/tex] it "runs" from x to y? (emerged at position x it spread in all over space not particulary to position y)In Peskin Schroeder in the chapter Casuality is said - "the amplitude for a particle to prapagete from x to y is [tex] <0|\phi(y)\phi(x)|0> [/tex]"

Let me try to help you. The difficulty resides partly in the fact that we are working in the Heisenberg picture which allows for a less intuitive "flow of time".

Let us first look, in the Schroedinger picture, at a simple case in non-relativistic quantum mechanics. Suppose that at t0, our system is known to be in state |A(t0)> and we want to know what is the amplitude, at t1, for our system to be in state |B(t1)>. What we do in this case, is to evolve state |A> forward in time from t0 to t1, so this is |A(t1)> = U(t0,t1) |A>, and then find the "component" of this state in the direction of |B(t1)>, namely:

amplitude = <B(t1) | A(t1) >
or:

amplitude = <B(t1)|U(t1,t0)|A(t0)>

Now, if we consider A and B to be some fixed states (say, position states), we have of course that |B(t1)> = |B> and |A(t0) > = |A>, and we can write:

amplitude = <B| U(t1,t0) |A>

Let us now look at the Heisenberg picture, and let us take t0 as "reference time" where Schroedinger and Heisenberg states coincide. This time, our system which was in state A at t0 remains of course in state A in the Heisenberg picture, so:

|A> = |A-heisenberg>

however, our system which we wanted to see in state B AT TIME t1 has now to be calculated backwards to t0 to have its corresponding Heisenberg state:
|B(t1)> ---> |B-heisenberg> = U(t0,t1) |B>

Now this is great, because our same amplitude can now be written as:

amplitude = <B_heisenberg | A_heisenberg>

We see that the "amplitude to go from one state to another in the Heisenberg picture" is simply given by the inproduct of the two states, and this independent of the "time" which correspond to these states, because the Heisenberg picture has reduced all times to t0 in the states.

Now, in QFT, the HEISENBERG state of a particle being at a position (x,y,z) at a moment t is given by: |x,y,z,t> = phi(x,y,z,t) |0>

So it should then (naively) be clear that the amplitude to go from a state where the particle is at (x,y,z,t) to a state where the particle is at (u,v,w,s), is given by:
<u,v,w,s|x,y,z,t> = <0| phi(u,v,w,s) phi(x,y,z,t) |0>, or in 4-vector notation:

<0| phi(y) phi(x) |0>

However, as dexter pointed out, this is not entirely correct, because we cannot in fact know whether the particle was created at x and went to y, or whether the particle was created at y and went to x.

In practice this is not exactly what is done. One can make a choice between different propagators ; you can use the commutator [phi(y),phi(x)], or the time ordered product T{phi(y) phi(x)}.
The last one is understanable in that we would like to have event x BEFORE event y (we create before we destroy).
There are some subtleties here which are not very clear to myself either so some enlightment could be useful.

cheers,
Patrick.
 
Last edited:
  • #7
Mr. Vanesch, dextercioby, George thks to u all.
 

FAQ: What additional role |p> play here?

What additional role do variables play in scientific research?

Variables play a crucial role in scientific research as they allow scientists to manipulate and measure different factors in an experiment. This helps to determine cause and effect relationships and establish patterns in data.

How do scientists determine which variables to include in their research?

Scientists typically choose variables that are relevant to their research question and can be manipulated or measured accurately. They also consider the potential impact of other variables that may affect the outcome of their study.

What is the difference between independent and dependent variables?

Independent variables are factors that are manipulated or controlled by the scientist in an experiment, while dependent variables are the outcomes or results that are measured. Independent variables cause changes in dependent variables.

Why is it important to control for extraneous variables in an experiment?

Extraneous variables are those that are not being intentionally manipulated in an experiment, but may still affect the outcome. It is important for scientists to control for these variables in order to accurately determine the relationship between the independent and dependent variables.

Are there limitations to using variables in scientific research?

Yes, there are limitations to using variables in scientific research. Some factors may be difficult to manipulate or measure accurately, and there may be ethical considerations that prevent certain variables from being included in an experiment.

Similar threads

Replies
61
Views
4K
Replies
3
Views
2K
Replies
4
Views
997
Replies
7
Views
1K
Replies
24
Views
2K
Replies
143
Views
9K
Back
Top