- #1
Tom McCurdy
- 1,020
- 1
A wire lies along the piecewise linear curve extending from the point (2,4) to the point (8,6) to the point (8,11). If the density of the wire is given by p(x,y)=2xy+6x, use a line integral to find the mass of the wire.
Here is what I have tried:
C1: (1-t)<2,4>+t<8,6>
C1: x=2+6t y=4+2t
[tex]\int_{0}^{1} 2xy+6y dt [/tex]
[tex]\int_{0}^{1} 2(2+6t)(4+2t)+6(2+6t) dt = 82[/tex]
C2: (1-t)<8,6> + t<8,11>
C2: x=8 y=6+5t
[tex]\int_{0}^{1} 2xy+6y dt [/tex]
[tex]\int_{0}^{1} 2(8)(6+5t)+6(8) dt = 184[/tex]
82+184 = 266
However this is incorrect :(
Here is what I have tried:
C1: (1-t)<2,4>+t<8,6>
C1: x=2+6t y=4+2t
[tex]\int_{0}^{1} 2xy+6y dt [/tex]
[tex]\int_{0}^{1} 2(2+6t)(4+2t)+6(2+6t) dt = 82[/tex]
C2: (1-t)<8,6> + t<8,11>
C2: x=8 y=6+5t
[tex]\int_{0}^{1} 2xy+6y dt [/tex]
[tex]\int_{0}^{1} 2(8)(6+5t)+6(8) dt = 184[/tex]
82+184 = 266
However this is incorrect :(