- #1
- 10,338
- 1,516
"mass" of a sphere of light - how pressure causes gravity
This rather old topic has come up again in another thread. I thought I would make an attempt to address it as simply as possible.
First, let's talk about an operational way to measure mass. Suppose we have a spherically symmetric body. In Newtonian theory, we know that we can find the mass of the body by applying Gauss's law - we integrate the gravitational force on a "test mass" over a spherical surface, and we will alway get
[tex]
\frac{GM}{r^2} 4 \pi r^2 = 4 \pi G M
[/tex]
independent of the radius r. Furthermore, the gravitational effect of a spherical shell of matter surrounding a probe is zero.
This sort of intergal can be applied in GR, as well as Newtonian theory, if one is willing to make a few very small adjustments. The biggest adjustment needed is that one has to include a factor related to the "time dilation" at the radius r. An alternative way of doing this is to measure the force via a string to an observer at infinity, rather than measuring the force directly with a local observer. This is discussed (in rather advanced terms) in Wald's "General Relativity" on pg 288 - though they do explicitly mention the "string" idea.
For the purposes of this thread, I'm going to ignore the details of how one deals with the time dilation factor, and simply assume that the fields and potentials are such that we never have experimentially significant time dilation, thus that we can ignore this factor. This basically places a modest constraint on the size of our experiment. The gravitational time dilation factor due to the entire mass of the Earth is, for instance, less than 1 part in a billion at its surface.
This "Gauss-law intergal" means of measuring mass is operationally equivalent to GR's defintion of Komar mass. The way we have described it applies to only spherically symmetric distributions of matter, though the concept can be generalized to any static (i.e. unchanging with time) metric.
This particular defintion of mass (Komar mass) is one of a very few in General Relativity that can be localized, i.e. where we can say not only how much mass a system has, but where exactly that mass is located.
Now, let us consider a very strong mirrored container, containing a "photon gas", i.e. randomly oriented high-frequency photons (electromagnetic radiation) bouncing around inside it.
We can use our concept of Komar mass to find, in theory, the amount of mass enclosed in a spherical shell of the gas. by lowering an accelerometer into the sphere and measuring the acceleration due to the gravity of the apparatus at various positions. (Fortuantely, we have an accelerometer that won't melt, and is also senstive enough to measure the minute accelerations accurately, this being a thought experiment). The gravitational field that we measure with our acceleromter will be given by Gauss's law and the amount of mass enclosed in the sphere of the appropriate radius, allowing us to measure the enclosed mass as a function of distance.
When we do this, we find that the "mass" of the ball of light is larger than we expect. This mass, ("Komar mass") will be about 2x as big as E/c^2! A more detailed analysis shows that, in geometric units, the Komar mass of the photon gas in a volume element dV is [itex](\rho + 3P)dV[/itex]. Here [/rho] is the energy density of the photon gas, and P is the pressure of the gas. It is a property of photon gasses that P=[itex]\rho/3[/itex].
At this point, we do another experiment. We take our very strong container, and we generate our photon gas inside it by detonating a nuclerar bomb or an anti-matter device to generate large quantites of x-rays, without adding or subtracting any matter or energy from the sphere.
We measure the gravitational field outside the sphere to see if it changes - if it does, the mass of our system has changed. We find that the gravitational field, and hence the mass, of the system has not changed, when our bomb detonates.
Now we do a third experiment. We take our empty shell, and we essentially "pump" a photon gas into it. We measure the amount of gas we "pump" into the shell (by measuring its energy), and the mass of the entire system. We find that when we pump a photon gas into the shell, the mass (Komar mass) of the photon gas is twice as high as one would expect from the relation E/c^2, but that the total mass of the system increases only by E/c^2.
Thus we conclude that the shell itself is getting lighter as we "inflate" it with photon gas.
The explanation for this odd behavior is that pressure causes gravity, and hence contributes to mass. The positive pressure of our photon gas causes the photon gas to "weigh more". The tension in our massive shell, needed to hold it together, causes it to "weigh less".
The total contribution of the pressure terms to the mass of the entire closed system is zero, but it changes the apparent distribution of mass, as measured by our gravity probes.
This rather old topic has come up again in another thread. I thought I would make an attempt to address it as simply as possible.
First, let's talk about an operational way to measure mass. Suppose we have a spherically symmetric body. In Newtonian theory, we know that we can find the mass of the body by applying Gauss's law - we integrate the gravitational force on a "test mass" over a spherical surface, and we will alway get
[tex]
\frac{GM}{r^2} 4 \pi r^2 = 4 \pi G M
[/tex]
independent of the radius r. Furthermore, the gravitational effect of a spherical shell of matter surrounding a probe is zero.
This sort of intergal can be applied in GR, as well as Newtonian theory, if one is willing to make a few very small adjustments. The biggest adjustment needed is that one has to include a factor related to the "time dilation" at the radius r. An alternative way of doing this is to measure the force via a string to an observer at infinity, rather than measuring the force directly with a local observer. This is discussed (in rather advanced terms) in Wald's "General Relativity" on pg 288 - though they do explicitly mention the "string" idea.
For the purposes of this thread, I'm going to ignore the details of how one deals with the time dilation factor, and simply assume that the fields and potentials are such that we never have experimentially significant time dilation, thus that we can ignore this factor. This basically places a modest constraint on the size of our experiment. The gravitational time dilation factor due to the entire mass of the Earth is, for instance, less than 1 part in a billion at its surface.
This "Gauss-law intergal" means of measuring mass is operationally equivalent to GR's defintion of Komar mass. The way we have described it applies to only spherically symmetric distributions of matter, though the concept can be generalized to any static (i.e. unchanging with time) metric.
This particular defintion of mass (Komar mass) is one of a very few in General Relativity that can be localized, i.e. where we can say not only how much mass a system has, but where exactly that mass is located.
Now, let us consider a very strong mirrored container, containing a "photon gas", i.e. randomly oriented high-frequency photons (electromagnetic radiation) bouncing around inside it.
We can use our concept of Komar mass to find, in theory, the amount of mass enclosed in a spherical shell of the gas. by lowering an accelerometer into the sphere and measuring the acceleration due to the gravity of the apparatus at various positions. (Fortuantely, we have an accelerometer that won't melt, and is also senstive enough to measure the minute accelerations accurately, this being a thought experiment). The gravitational field that we measure with our acceleromter will be given by Gauss's law and the amount of mass enclosed in the sphere of the appropriate radius, allowing us to measure the enclosed mass as a function of distance.
When we do this, we find that the "mass" of the ball of light is larger than we expect. This mass, ("Komar mass") will be about 2x as big as E/c^2! A more detailed analysis shows that, in geometric units, the Komar mass of the photon gas in a volume element dV is [itex](\rho + 3P)dV[/itex]. Here [/rho] is the energy density of the photon gas, and P is the pressure of the gas. It is a property of photon gasses that P=[itex]\rho/3[/itex].
At this point, we do another experiment. We take our very strong container, and we generate our photon gas inside it by detonating a nuclerar bomb or an anti-matter device to generate large quantites of x-rays, without adding or subtracting any matter or energy from the sphere.
We measure the gravitational field outside the sphere to see if it changes - if it does, the mass of our system has changed. We find that the gravitational field, and hence the mass, of the system has not changed, when our bomb detonates.
Now we do a third experiment. We take our empty shell, and we essentially "pump" a photon gas into it. We measure the amount of gas we "pump" into the shell (by measuring its energy), and the mass of the entire system. We find that when we pump a photon gas into the shell, the mass (Komar mass) of the photon gas is twice as high as one would expect from the relation E/c^2, but that the total mass of the system increases only by E/c^2.
Thus we conclude that the shell itself is getting lighter as we "inflate" it with photon gas.
The explanation for this odd behavior is that pressure causes gravity, and hence contributes to mass. The positive pressure of our photon gas causes the photon gas to "weigh more". The tension in our massive shell, needed to hold it together, causes it to "weigh less".
The total contribution of the pressure terms to the mass of the entire closed system is zero, but it changes the apparent distribution of mass, as measured by our gravity probes.
Last edited: