- #1
- 7,643
- 1,600
Dirac Proves 0 = 1
Suppose [itex]A[/itex] is an observable, i.e., a self-adjoint operator, with real eigenvalue [itex]a[/itex] and normalized eigenket [itex] \left| a \right>[/itex]. In other words,
[tex]A \left| a \right> = a \left| a \right>, \hspace{.5 in} \left< a | a \right> = 1.[/tex]
Suppose further that [itex]A[/itex] and [itex]B[/itex] are canonically conjugate observables, so
[tex] \left[ A , B \right] = i \hbar I,[/tex]
where [itex]I[/itex] is the identity operator. Compute, with respect to [itex]\left| a \right>[/itex], the matrix elements of this equation divided by [itex]i \hbar[/itex]:
[tex]
\begin{equation*}
\begin{split}
\frac{1}{i \hbar} \left< a | \left[ A , B \right] | a \right> &= \left< a | I | a \right>\\
\frac{1}{i \hbar} \left( \left< a | AB | a \right> - \left<a | BA | a \right> \right) &= <a|a>.
\end{split}
\end{equation*}
[/tex]
In the first term, let [itex]A[/itex] act on the bra; in the second, let [itex]A[/itex] act on the ket:
[tex]\frac{1}{i \hbar} \left( a \left< a | B | a \right> - a \left<a | B | a \right> \right)= <a|a>.[/tex]
Thus,
[tex]0 = 1.[/tex]
This is my favourite "proof" of the well-known equation [itex]0 = 1[/itex].
What gives?
In order not spoil other people's fun, it might be best to put "spoiler" at the top of any post that explains what's happening.
Regards,
George
Suppose [itex]A[/itex] is an observable, i.e., a self-adjoint operator, with real eigenvalue [itex]a[/itex] and normalized eigenket [itex] \left| a \right>[/itex]. In other words,
[tex]A \left| a \right> = a \left| a \right>, \hspace{.5 in} \left< a | a \right> = 1.[/tex]
Suppose further that [itex]A[/itex] and [itex]B[/itex] are canonically conjugate observables, so
[tex] \left[ A , B \right] = i \hbar I,[/tex]
where [itex]I[/itex] is the identity operator. Compute, with respect to [itex]\left| a \right>[/itex], the matrix elements of this equation divided by [itex]i \hbar[/itex]:
[tex]
\begin{equation*}
\begin{split}
\frac{1}{i \hbar} \left< a | \left[ A , B \right] | a \right> &= \left< a | I | a \right>\\
\frac{1}{i \hbar} \left( \left< a | AB | a \right> - \left<a | BA | a \right> \right) &= <a|a>.
\end{split}
\end{equation*}
[/tex]
In the first term, let [itex]A[/itex] act on the bra; in the second, let [itex]A[/itex] act on the ket:
[tex]\frac{1}{i \hbar} \left( a \left< a | B | a \right> - a \left<a | B | a \right> \right)= <a|a>.[/tex]
Thus,
[tex]0 = 1.[/tex]
This is my favourite "proof" of the well-known equation [itex]0 = 1[/itex].
What gives?
In order not spoil other people's fun, it might be best to put "spoiler" at the top of any post that explains what's happening.
Regards,
George
Last edited: