- #1
lightarrow
- 1,968
- 63
Wien's displacement law relates a blackbody temperature T with the wavelenght l of its maximum emission: l(max) = a/T, where a is a constant. Let's calculate a.
Spectral radiance as a function of frequency v:
R(v) = [8(pi)h(v/c)^3] * 1/[exp(hv/kT)-1].
as a function of wavelenght l:
R'(l) = (8(pi)hc/l^5) * 1/[exp(hc/lkT)-1].
You can obtain this last formula from the previous one, writing:
Integral(0;+infinity)R(v)dv = Integral(0;+infinity)R'(l)dl
---------------------------------------------------------------------------------------------------
Now we derivate the radiance, to obtain the point of maximum:
dR(v)/dv = 0 --> 1-(1/3)hv/kT = exp(-hv/kT) -->
1-(1/3)hc/lkT = exp(-hc/lkT) (1)
dR'(l)/dl = 0 -->
1-(1/5)hc/lkT = exp(-hc/lkT) (2)
---------------------------------------------------------------------------------------------------
Solving for l equations (1) and (2) gives two different values of l !
(1) gives (numerically, Mathcad): hc/lkT = 2.82 -->
l(max) = 5.11*10^-3/T
(2) gives (numerically, Mathcad): hc/lkT = 4.97 -->
l(max) = 2.90*10^-3/T
---------------------------------------------------------------------------------------------------
The values taken for computation:
k = 1.38*10^-23 J/°K
h = 6.63*10^-34 J*s
c = 3.00*10^8 m/s
---------------------------------------------------------------------------------------------------
Why two values for a?
Since the blackbody colour depends on l(max), this question could also be put:
which is the real blackbody's colour?
Spectral radiance as a function of frequency v:
R(v) = [8(pi)h(v/c)^3] * 1/[exp(hv/kT)-1].
as a function of wavelenght l:
R'(l) = (8(pi)hc/l^5) * 1/[exp(hc/lkT)-1].
You can obtain this last formula from the previous one, writing:
Integral(0;+infinity)R(v)dv = Integral(0;+infinity)R'(l)dl
---------------------------------------------------------------------------------------------------
Now we derivate the radiance, to obtain the point of maximum:
dR(v)/dv = 0 --> 1-(1/3)hv/kT = exp(-hv/kT) -->
1-(1/3)hc/lkT = exp(-hc/lkT) (1)
dR'(l)/dl = 0 -->
1-(1/5)hc/lkT = exp(-hc/lkT) (2)
---------------------------------------------------------------------------------------------------
Solving for l equations (1) and (2) gives two different values of l !
(1) gives (numerically, Mathcad): hc/lkT = 2.82 -->
l(max) = 5.11*10^-3/T
(2) gives (numerically, Mathcad): hc/lkT = 4.97 -->
l(max) = 2.90*10^-3/T
---------------------------------------------------------------------------------------------------
The values taken for computation:
k = 1.38*10^-23 J/°K
h = 6.63*10^-34 J*s
c = 3.00*10^8 m/s
---------------------------------------------------------------------------------------------------
Why two values for a?
Since the blackbody colour depends on l(max), this question could also be put:
which is the real blackbody's colour?