- #1
gtabmx
- 56
- 0
Hi, I have been doing a simple experiment with a 2L bottle and a cut out slot near the bottom. I have gathered data regarding the time it takes the water level in the bottle to go from 13cm above the slot to the slot itself, versus the area of the slot. My data shows a perfect inverse relationship between the time for the water level to reach the slot with a constant of 0.0169. I am working in standard units and my functions looks as follows T=0.0169/A. Now I need to determine what the 0.0169 is so i can derive a formula that can determine the time it takes to empty the bottle depending on initial volume, bottle radius, and slot area.
I have been searching everytwhere for relevant information but I honestly cannot find anything I can use to help me. I am desperate to know because it would solve all my problems. The next part of my experiment is to derive a formula for the volume in the bottle after a certian time has elasped. The data for this experiment fits a parabola which I also cannot explain. If someone can please clear this up for me I would be so grateful, but please don't think I am asking someone to do my homework, I have doen the experiments and sat down since 5:00 (and now its 12:30) with a pencil and apper searching online for info and taking derivatives and integrals and using pressure and potential energy and reading up on CV factors, etc. Please, if anyone can help I would be so relieved.
Alos, someone has told me that a diiferential equation must be used in this case, which makes sense since water flow depends on volume which decreases over time due to water flow.
Thanks,
Mike.
I have been searching everytwhere for relevant information but I honestly cannot find anything I can use to help me. I am desperate to know because it would solve all my problems. The next part of my experiment is to derive a formula for the volume in the bottle after a certian time has elasped. The data for this experiment fits a parabola which I also cannot explain. If someone can please clear this up for me I would be so grateful, but please don't think I am asking someone to do my homework, I have doen the experiments and sat down since 5:00 (and now its 12:30) with a pencil and apper searching online for info and taking derivatives and integrals and using pressure and potential energy and reading up on CV factors, etc. Please, if anyone can help I would be so relieved.
Alos, someone has told me that a diiferential equation must be used in this case, which makes sense since water flow depends on volume which decreases over time due to water flow.
Thanks,
Mike.