Sparky_
- 227
- 5
Homework Statement
y'' + 3y' + 2y = sin(e^x)
Homework Equations
The Attempt at a Solution
y'' + 3y' + 2y = sin(e^x)
m^2 + 3m + 2 = 0
m1 = -2 ; m2 = -1
yc = c1e^{-2x} c2 e^{-x}
y1 = e^{-2x}
y1' = -2e^{-2x}
y2 = e^{-x}
y2' = -e^{-x}
The W Matrix works out to
W = e^{-3x}
u1' = -e^{x}sin(e^x)
u1 = sin(e^x)
u2' = e^{2x}sin(e^x)
u2 = -e^xcos(e^x) + sin(e^x)
(This is the integration by parts solution in an earlier posting:
https://www.physicsforums.com/showthread.php?t=207521
my solution:
y = c1e^{-2x} + c2e^{-x} + e^{-2x}sin(e^x) + e^{-x}[-e^xcos(e^x) + sin(e^x)]
The book's solution:
y = c1e^{-2x} + c2e^{-x} - e^{-2x}sin(e^x)
(I'm not in school but this is a problem out of a book - I'm trying to brush up)
Thanks for the help
-Sparky
Last edited:
