Tachyons travel backward in time?

In summary: However, if you had a frame in which two observers were in relative motion and they both synchronized their clocks, then they might both say that the tachyon had moved backwards in time in that frame.
  • #1
CJames
369
1
The time dilation equation:

[tex]\Delta t' = \Delta t/\sqrt{1 - v^2/c^2}[/tex]

Now let's consider a tachyon with v = 2c

[tex]\Delta t' = \Delta t/\sqrt{1 - (2c)^2/c^2}[/tex]
[tex]\Delta t' = \Delta t/\sqrt{1 - 4c^2/c^2}[/tex]
[tex]\Delta t' = \Delta t/\sqrt{1 - 4}[/tex]
[tex]\Delta t' = \Delta t/\sqrt{-3}[/tex]
[tex]\Delta t' = \Delta ti/\sqrt{3}[/tex]

I've always heard that tachyons, if they exist, move backward in time. I would've thought this would be expressed as a negative delta t, but from this it appears to be a complex number. Can somebody explain why a complex delta t describes backward time travel? Or am I going about this the wrong way?
 
Physics news on Phys.org
  • #2
As tachyons travel faster than light then you can always change to a different inertial coordinate frame so that they travel backwards in time (or instantaneously) according to that frame.
 
  • #3
gel said:
As tachyons travel faster than light then you can always change to a different inertial coordinate frame so that they travel backwards in time (or instantaneously) according to that frame.

Is it not true that in a specific inertial frame timing the travel of a tachyon between an emitter and detector, the time can never be negative, but limits as instantaneous for infinite speed? It appears to me that the "traveling backwards in time" can only be apparent if you switch coordinates during the measurement.
 
  • #4
Jorrie said:
Is it not true that in a specific inertial frame timing the travel of a tachyon between an emitter and detector, the time can never be negative, but limits as instantaneous for infinite speed? It appears to me that the "traveling backwards in time" can only be apparent if you switch coordinates during the measurement.
I'm not sure I've understood your question. The identification of an "emitter" and a "detector" depends on the frame of reference. You can think of the tachyon's presence at the emitter as one space-time event and its presence at the detector as another. The key here is that the space-time interval between these events is space-like, not time-like. That means that while one observer sees the "emission" event occurring before the "detection" event, you can easily find other reference frames in which the "detection" event comes first (and so you could claim that the tachyon moved backwards in time in that frame, although that's arbitrary, since its direction in time is not absolute). There will also be a frame in which they are simultaneous. In that frame the tachyon actually exists at all points along its path simultaneously, which is kind of what you'd expect for events that have space-like separations.
 
  • #5
belliott4488 said:
The identification of an "emitter" and a "detector" depends on the frame of reference.
I would think that energy considerations could unambiguously identify the emitter and detector.
 
  • #6
belliott4488 said:
That means that while one observer sees the "emission" event occurring before the "detection" event, you can easily find other reference frames in which the "detection" event comes first (and so you could claim that the tachyon moved backwards in time in that frame, although that's arbitrary, since its direction in time is not absolute).

Exactly. It is the way different observers in relative motion synchronize their frame's clocks. I still believe that no inertial frame that does an experiment with a hypothetical tachyon and synchronized clocks could find it to have "moved backwards in time" in that frame. If a tachyon moves at 2c in that frame, it will take half the time that light would take to travel from emitter to detector. This fact cannot depend upon who else is watching from some other inertial frame, or can it?

Obviously, other frames timing "my tachyon" may get different answers from their respective synchronized clocks. BTW, how do we add super-luminal speeds relativistically?
 
  • #7
Feynman diagram of quantum field theory shows antiparticles travel backward in time
 
  • #8
Xeinstein said:
Feynman diagram of quantum field theory shows antiparticles travel backward in time


that is true, but does they do so in reality? not what I know..
 
  • #9
DaleSpam said:
I would think that energy considerations could unambiguously identify the emitter and detector.
Yes, but that's an example of what makes tachyons non-physical. They don't obey the basic notion of cause preceding effect.
 
  • #10
Jorrie said:
Exactly. It is the way different observers in relative motion synchronize their frame's clocks. I still believe that no inertial frame that does an experiment with a hypothetical tachyon and synchronized clocks could find it to have "moved backwards in time" in that frame. If a tachyon moves at 2c in that frame, it will take half the time that light would take to travel from emitter to detector. This fact cannot depend upon who else is watching from some other inertial frame, or can it?

Obviously, other frames timing "my tachyon" may get different answers from their respective synchronized clocks. BTW, how do we add super-luminal speeds relativistically?
Yes, that's true - no one observer would conclude that a tachyon moved backward in time (what would that look like, anyway?). What would be the case is that different observers would disagree whether it moved from pt. a to pt. b or from pt. b to pt. a. If one event were clearly defined as the "start", however, like a projectile being launched from a gun, then there would be some observers who would see it move "backwards" from its "destination" back to the gun. I wouldn't call that moving backwards in time; I'd just call it a non-physical sequence of events.

The observer who see the object at all places at once is clearly going to have difficult time describing any kind of "motion" for this object.
 
Last edited:
  • #11
Xeinstein said:
Feynman diagram of quantum field theory shows antiparticles travel backward in time
Not exactly. If you try to interpret the field as the field of a particle, say an electron, then yes, it appears to move in reverse. That's part of the reason why it makes more sense to interpret it as an anti-particle - the positron in this case - that moves forward in time like anything else.
 
  • #12
belliott4488 said:
Yes, that's true - no one observer would conclude that a tachyon moved backward in time (what would that look like, anyway?). What would be the case is that different observers would disagree whether it moved from pt. a to pt. b or from pt. b to pt. a. If one event were clearly defined as the "start", however, like a projectile being launched from a gun, then there would be some observers who would see it move "backwards" from its "destination" back to the gun. I wouldn't call that moving backwards in time; I'd just call it a non-physical sequence of events.
But if you accept that tachyons obey the principle of relativity--that they work the same way in all reference frames--then if it is possible for the receiving of a tachyon message to happen before the sending of that message in at least one frame, it must be possible in all frames. So if you are traveling away from me at sublight speeds, and I send you a tachyon signal which goes FTL in my frame but "backwards in time" in your frame (meaning just that in your frame you receive the signal before I sent it), then you immediately send a reply which travels FTL in your frame but backwards in time in mine, then it is possible for me to receive your reply before I sent the original message, a clear physical violation of causality. This is nicely illustrated with a spacetime diagram on this page:

http://www.theculture.org/rich/sharpblue/archives/000089.html
 
Last edited:
  • #13
Thanks for the diagrams, JesseM.

By the way, it seems to me that this sort of thing would happen regardless of the method for superluminal velocity. Even if the object weren't traveling faster than light locally, as in the Alcubierre drive, it still looks like you could use it to violate causality. Is that correct? Wormholes might get around it, because if you construct one that violates causality vacuum noise causes it to collapse. But then if you can have wormholes why couldn't you have the Alcubierre drive?

Sorry, slightly off topic.

What does complex time mean, anyway?
 
Last edited:
  • #14
That's part of the reason why it makes more sense to interpret it as an anti-particle - the positron in this case - that moves forward in time like anything else.
Who says that makes more sense? So in other words all anti-matter could simply be explained by normal matter moving backwards in time? That sounds like a much simpler explanation than doubling the number of fundamental particles just to preserve a forward-only time dimension (for which no one knows _why_ it must always be forward).
 
  • #15
peter0302 said:
Who says that makes more sense? So in other words all anti-matter could simply be explained by normal matter moving backwards in time? That sounds like a much simpler explanation than doubling the number of fundamental particles just to preserve a forward-only time dimension (for which no one knows _why_ it must always be forward).
My understanding is that "moving forwards in time" vs. "moving backwards in time" doesn't really have any clear physical meaning (if you draw a vertical line on a piece of paper, is it 'moving up the page' or 'moving down the page'? Why should a timelike worldline in relativity be any more directional than a line on paper?), and that the idea of antiparticles being like regular particles "moving backwards in time" is more like a mathematical trick that can simplify things when summing feynman diagrams, something like the difference between doing an integral from [tex]\int_{t_0}^{t_1}[/tex] vs. an integral from [tex]\int_{t_1}^{t_0}[/tex]. I could be wrong about this, but this statement from an FAQ on virtual particles seems to be saying something along these lines:
Now, consider a virtual photon that comes from the particle on the right and is absorbed by the particle on the left. Actually calculating the photon's wave function is a little hairy; I have to consider the possibility that the photon was emitted by the other particle at any prior time. (However, I can save myself a little effort later by automatically including the possibility that the photon actually comes from the particle on the left and is absorbed by the particle on the right, with the recoil nudging the left particle: all I have to do is include situations in which the photon is "emitted on the right" in the future and goes "backward in time," and take its momentum to be minus what it really is! As long as I remember what's really going on, this trick is formally OK and saves a lot of trouble; it was introduced by Richard Feynman.)
 
  • #16
JesseM said:
Why should a timelike worldline in relativity be any more directional than a line on paper?
That is a very interesting point. Since there is only one time dimension (dimension with opposite sign in spacetime interval) timelike lines have a definite before-end and after-end which cannot be swapped. On the other hand with three spatial dimensions spacelike lines don't have a definite left-end and right-end since you can always rotate things around.

I have no idea what the implications are for something like that, but it makes a clear difference between a tachyon and a positron-is-an-electron-running-backwards-in-time. In the case of the positron the worldline is still timelike, just running in reverse. That seems to be a much more clear "backwards in time" than the spacelike worldline of a tachyon.
 
  • #17
DaleSpam said:
That is a very interesting point. Since there is only one time dimension (dimension with opposite sign in spacetime interval) timelike lines have a definite before-end and after-end which cannot be swapped.
What do you mean "cannot be swapped"? The laws of physics are time-symmetric (or in quantum field theory, charge-parity-time-reversal invariant) so you're free to reverse the labels of which direction in time you call the "future" and which you call "the past", and for any physical process you can find another physically allowable process which looks like a backwards version of the first (though you may need to flip the charges and parity of the system of particles in the second as well).
DaleSpam said:
I have no idea what the implications are for something like that, but it makes a clear difference between a tachyon and a positron-is-an-electron-running-backwards-in-time. In the case of the positron the worldline is still timelike, just running in reverse.
What do you mean "running in reverse"? What physical statement are you making here? Again, as far as I know the concept of treating a positron like an electron "going back in time" is just a mathematical trick for summing feynman diagrams.
 
  • #18
JesseM said:
What do you mean "cannot be swapped"?
I mean that you cannot rotate in a single dimension.

I am not talking physics here, just geometry. In a single dimension you cannot rotate an object so there is a clear directionality to the two ends of a line. In two or more dimensions there is no longer a clear directionality to the two ends of a line. You can always approach the line from the other side and then the sense of the direction of the line is reversed.

I thought that was the point you were making with your "Why should a timelike worldline in relativity be any more directional than a line on paper?" comment.
 
Last edited:
  • #19
I've just never heard an explanation as to why a "normal particle backwards in time" model is any less "real" and more of simply a "trick" than a "anti-particle forwards in time" model. Seems to me like people use the latter view just to comfort themselves into believing in the absolute nature of linear time.

I also find it incredibly interesting that a 4-dimensional Euclidean view of Relativity has particles moving faster than the speed of light as moving backwards in time as well. These particles would be indistinguishable from anti-particles. But, again, we don't use that model, and instead use the Minkowski model, simply to keep our minds at ease that time always moves forward.

[Edit] Just wanted to add, in that model,whether the particle is a "real" particle or "anti" particle is frame-dependent. In other words, _all_ of the quantum numbers, not just mass, become frame dependent. Doesn't this make for a simpler unified theory?
 
Last edited:
  • #20
peter0302 said:
I've just never heard an explanation as to why a "normal particle backwards in time" model is any less "real" and more of simply a "trick" than a "anti-particle forwards in time" model. Seems to me like people use the latter view just to comfort themselves into believing in the absolute nature of linear time.
But what do you mean by "forwards in time" or "backwards in time"? As far as I know particles don't "move" in time in either direction in any meaningful physical sense, they just have worldlines in spacetime. Like I said, maybe in the course of certain mathematical procedures you would integrate along the worldline from one end to the other or something like that, but I don't think there's any reason to take this too literally as some sort of physical reality (and note that even as a mathematical procedure, I don't think you're forced to treat antiparticles as normal particles moving backwards, it just simplifies the calculation, and I imagine you could equally well say antiparticles are moving forwards and normal particles are antiparticles moving backwards.)
peter0302 said:
I also find it incredibly interesting that a 4-dimensional Euclidean view of Relativity has particles moving faster than the speed of light as moving backwards in time as well. These particles would be indistinguishable from anti-particles. But, again, we don't use that model, and instead use the Minkowski model, simply to keep our minds at ease that time always moves forward.
The minkowski model doesn't say time moves forward or backward, any more than it says space moves left or right, at least not as far as I can tell. And what do you mean by "4-dimensional Euclidean view"?
 
  • #21
DaleSpam said:
I mean that you cannot rotate in a single dimension.

I am not talking physics here, just geometry. In a single dimension you cannot rotate an object so there is a clear directionality to the two ends of a line. In two or more dimensions there is no longer a clear directionality to the two ends of a line. You can always approach the line from the other side and then the sense of the direction of the line is reversed.

I thought that was the point you were making with your "Why should a timelike worldline in relativity be any more directional than a line on paper?" comment.
No, my point was about physics, that there isn't any physical meaning to the notion of something actually physically "moving" in a particular direction in time. And the fact that a line isn't "moving up the page" or "moving down the page" doesn't have any relation to the question of whether or not you can rotate the paper, as far as I can tell--why do you think it would?
 
  • #22
The minkowski model doesn't say time moves forward or backward, any more than it says space moves left or right, at least not as far as I can tell. And what do you mean by "4-dimensional Euclidean view"?
https://www.physicsforums.com/showthread.php?t=103977

And, as far as the Minkowski model, if you draw the worldlines of various particles moving at relativistic speeds, none are ever moving in the -t direction for any observer. In a 4-dimensional Euclidean relativity, with time on equal footing with space, if you continue to accelerate "past" 'c' relative to an observer you wind up moving backwards in time relative to that observer. By extension, that observer would believe you to be made of "antimatter".
 
  • #23
peter0302 said:
https://www.physicsforums.com/showthread.php?t=103977
That's a lot to look over, but I'll try to get to it sometime.
peter0302 said:
And, as far as the Minkowski model, if you draw the worldlines of various particles moving at relativistic speeds, none are ever moving in the -t direction for any observer.
I still don't know what you're talking about here. What does it mean for a worldline to "move" at all, given that spacetime is completely static? Do you claim that worldlines are "moving in the +t direction" for any observer? If so, in what sense? Can you give a numerical example or something? Perhaps you're talking about the "arrow of time" for macroscopic objects (including the psychological arrow) rather than something that can be applied to individual particles?
 
  • #24
Do you claim that worldlines are "moving in the +t direction" for any observer? If so, in what sense? Can you give a numerical example or something?
I really think I'm being obvious, but nonetheless:

Take a two-dimensional Minkowski diagram for any particle, one axis being "x", one being "T", where T=ict. dT/dx is always >= 1 and, obviously, is always greater than 0. That's what I mean by "forward" in time.
 
  • #25
peter0302 said:
I really think I'm being obvious, but nonetheless:

Take a two-dimensional Minkowski diagram for any particle, one axis being "x", one being "T", where T=ict.
Why are you multiplying by i here?
peter0302 said:
dT/dx is always >= 1 and, obviously, is always greater than 0.
Given your definition of T, won't dT/dx be imaginary? Consider the worldline of a particle moving at 0.5c (we can use units of 0.5 light-seconds per second) in the +x direction. Then we'd have x(t) = 0.5 l.s./s * t, meaning that t(x) = 2 s/l.s. * x. In this case if T(t)=ict = it*(1 l.s./s) then T(x) = 2i * x. So, dT/dx = 2i.
 
  • #26
Why are you multiplying by i here?
I thought "ict" was the conversion used in SR for time to space. Maybe there's no 'i'. Either way, same point.
 
  • #27
peter0302 said:
I thought "ict" was the conversion used in SR for time to space. Maybe there's no 'i'. Either way, same point.
But the point doesn't work if you remove the i either. Before I imagined an object moving in the +x direction at 0.5c, now just imagine one moving in the -x direction at 0.5c; if dT/dx (with T = ct) was 2 in the first case, it's -2 in the second case.
 
  • #28
JesseM said:
And the fact that a line isn't "moving up the page" or "moving down the page" doesn't have any relation to the question of whether or not you can rotate the paper, as far as I can tell--why do you think it would?
Sure it does. This is pretty basic topology. If you have a line segment in one dimension, and you consider arbitrary smooth transformations (homeomorphisms), the only way to swap the positive end and the negative end is through a degenerate state (a point or an infinitely long segment). In other words, topologically the positive end is always the positive end and the negative end is always the negative end. On the other hand, if you have a line segment in two dimensions, and you consider arbitrary smooth transformations, you can easily swap the positive end and the negative end without passing through a degenerate state.

I'm sorry that I misunderstood your point. The way I misunderstood it was pretty interesting though. I haven't thought about it enough to attach to it any physical significance yet, but I think that there may be something geometrically or topologically different between the two ends of a timelike line and that there is not such a difference between the two ends of a spacelike line. I could easily be wrong on that point, and even if I am right I haven't thought it through to a physical conclusion, but I find it interesting.
 
  • #29
DaleSpam said:
Sure it does. This is pretty basic topology. If you have a line segment in one dimension, and you consider arbitrary smooth transformations (homeomorphisms), the only way to swap the positive end and the negative end is through a degenerate state (a point or an infinitely long segment). In other words, topologically the positive end is always the positive end and the negative end is always the negative end.
Yes, obviously if a line comes pre-labeled with a "positive end" and a "negative end", you can distinguish between lines with the positive end up and lines with the negative end up, and in one dimension you can't smoothly rotate one into the other. But if I just draw a line on a piece of paper without any labeling, how are you going to decide whether it's "moving up the page" or "moving down the page"? Likewise, what physical features (not arbitrary decisions about how we humans choose to label things) do you think distinguish a worldline that's "moving forward in time" from one that's "moving backwards in time"?
 
  • #30
The fact that diagrams and equations show that something could travel back in time doesn't mean it's a fact, it just shows the maths can go both ways - we developed the maths to explain observed results. Time doesn't exist, it's simply what we measure as the passing of one moment to the next.

Light doesn't govern the passage of time, we base the measurment of time on the speed of light but something traveling ftl doesn't mean it travels back in time. What we observe in experiments involving such particles is not neccessarily what is actually happening - our observations are limited by the speed of light afterall.
 
  • #31
JesseM said:
But the point doesn't work if you remove the i either. Before I imagined an object moving in the +x direction at 0.5c, now just imagine one moving in the -x direction at 0.5c; if dT/dx (with T = ct) was 2 in the first case, it's -2 in the second case.

Ok, then why don't you tell me the mathematical way of saying what you know I'm trying to say?
 
  • #32
peter0302 said:
Ok, then why don't you tell me the mathematical way of saying what you know I'm trying to say?
I don't know what you're trying to say, because I don't think there's any physical meaning to the notion of "moving forward in time" vs. "moving backwards in time".
 
  • #33
JesseM said:
I don't know what you're trying to say, because I don't think there's any physical meaning to the notion of "moving forward in time" vs. "moving backwards in time".
Ah, then why don't you go change the past for us?
 
  • #34
peter0302 said:
Ah, then why don't you go change the past for us?
Physicists talk about the notion of time travel without any need for a notion of "moving" in time--they just talk about "closed timelike curves", analogous to a line on a piece of paper which bends around into a loop so two different parts of the line can cross. As long as there are no timelike curves, time travel isn't possible.
 
  • #35
Ok I finally figured out how to say what I mean mathematically.

Nothing goes backwards in time because for every "t" coordinate, there can be one and only one observed value of "x,y,z".
 

Similar threads

Replies
123
Views
6K
Replies
20
Views
1K
Replies
13
Views
1K
Replies
31
Views
3K
Replies
1
Views
896
Back
Top