- #1
yuiop
- 3,962
- 20
Proof that pressure is invariant on the front and back faces of the moving box.
(We are already agreed in another thread that the pressure is invariant on the other faces)
Pressure in the rest frame of the box: (Frame S)
When a gas particle of mass M and velocity U collides with a face (area A) of the box it rebounds at the same velocity (assuming perfect elasticity) so the change in momentum d(mv) of the particle is 2*M*U. The time interval dt between collisions with the same face by the same particle is 2*L/U where L is the length of the box normal to the face. Pressure = force/area = (d(mv)/dt)/A. Using the relativistic expression for momentum (d(mv)y) where y is the Lorentz factor, the pressure in the rest frame for N particles can be expressed as
[tex]P = \frac{NMU^2}{AL\sqrt{1-\frac{U^2}{c^2}}}[/tex]
Pressure in Frame S’:
When the box is moving relative to the observer the velocity of the particle is given by the relativistic velocity addition formula.
The forward velocity of the particle is:
[tex] F=\frac{(V+U)}{(1+\frac{UV}{c^2})}[/tex]
and the backward velocity is:
[tex] B=\frac{(V-U)}{(1-\frac{UV}{c^2})}[/tex]
The time T for the particle to traverse the length of the box and back is given by:
[tex] T=\frac{L}{y}\left(\frac{1}{(V-B)}+\frac{1}{(F-V)}\right)[/tex]
If we substitute the expressions for F, B and y and simplify we get:
[tex]T=\frac{2L}{U \sqrt{1-\frac{V^2}{c^2}}}[/tex]
which is the time interval in the rest frame multiplied by the Lorentz factor.
The pressure P’ on the front face of the moving box is then given by:
[tex]P\prime = \frac{NM}{AT}\left(\frac{F}{\sqrt{1-\frac{F^2}{c^2}}}-\frac{B}{\sqrt{1-\frac{B^2}{c^2}}}\right)[/tex]
To prove that P = P’ it has to be shown that the expression for pressure in the rest frame is equal to the expression for pressure in the moving frame:
[tex]\frac{NMU^2}{AL\sqrt{1-\frac{U^2}{c^2}}}=\frac{NM}{AT}\left(\frac{F}{\sqrt{1-\frac{F^2}{c^2}}}-\frac{B}{\sqrt{1-\frac{B^2}{c^2}}}\right)[/tex]
Setting the value of c to 1 to simplify things this becomes:
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}}=\frac{NM}{AT}\left(\frac{F}{\sqrt{1-F^2}}-\frac{B}{\sqrt{1-B^2}}\right)[/tex]
-->
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}}= \frac{NM}{AT}\left(\frac{1}{\sqrt{\frac{1}{F^2}-1}}-\frac{1}{\sqrt{\frac{1}{B^2}-1}}\right)[/tex]
Substituting the full expressions for F and B (but with c=1)
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}} = \frac{NM}{AT} \left(\frac{1}{\sqrt{\frac{(1+UV)^2}{(V+U)^2}-1}} - \frac{1}{\sqrt{\frac{(1-UV)^2}{(V-U)^2}-1}}\right)[/tex]
-->
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}} = \frac{NM}{AT} \left(\frac{1}{\sqrt{\frac{(1+UV)^2-(V+U)^2}{(V+U)^2}}} - \frac{1}{\sqrt{\frac{(1-UV)^2-(V-U)^2}{(V-U)^2}}}\right)[/tex]
-->
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}} = \frac{NM}{AT} \left(\frac{1}{\sqrt{\frac{(1-U^2)(1-V^2)}{(V+U)^2}}} - \frac{1}{\sqrt{\frac{(1-U)^2(1-V^2)}{(V-U)^2}}}\right)[/tex]
-->
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}} = \frac{NM}{AT} \left(\frac{(V+U)}{\sqrt{(1-U^2)(1-V^2)}} - \frac{(V-U)}{\sqrt{(1-U^2)(1-V^2)}}\right)[/tex]
-->
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}} = \frac{NM}{AT} \left(\frac{2U}{\sqrt{(1-U^2)(1-V^2)}} \right)[/tex]
Substitute the expression T = [tex]\frac{2L}{U \sqrt{1-\frac{V^2}{c^2}}} [/tex] obtained earlier (setting c=1):
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}} = \frac{NMU\sqrt{1-V^2}}{2AL} \left(\frac{2U}{\sqrt{(1-U^2)(1-V^2)}} \right)[/tex]
-->
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}} = \frac{NMU^2}{AL\sqrt{(1-U^2)}}[/tex]
So P = P’ within the valid domain (-c<V<c) and (-c<U<c)
Q.E.D.
(We are already agreed in another thread that the pressure is invariant on the other faces)
Pressure in the rest frame of the box: (Frame S)
When a gas particle of mass M and velocity U collides with a face (area A) of the box it rebounds at the same velocity (assuming perfect elasticity) so the change in momentum d(mv) of the particle is 2*M*U. The time interval dt between collisions with the same face by the same particle is 2*L/U where L is the length of the box normal to the face. Pressure = force/area = (d(mv)/dt)/A. Using the relativistic expression for momentum (d(mv)y) where y is the Lorentz factor, the pressure in the rest frame for N particles can be expressed as
[tex]P = \frac{NMU^2}{AL\sqrt{1-\frac{U^2}{c^2}}}[/tex]
Pressure in Frame S’:
When the box is moving relative to the observer the velocity of the particle is given by the relativistic velocity addition formula.
The forward velocity of the particle is:
[tex] F=\frac{(V+U)}{(1+\frac{UV}{c^2})}[/tex]
and the backward velocity is:
[tex] B=\frac{(V-U)}{(1-\frac{UV}{c^2})}[/tex]
The time T for the particle to traverse the length of the box and back is given by:
[tex] T=\frac{L}{y}\left(\frac{1}{(V-B)}+\frac{1}{(F-V)}\right)[/tex]
If we substitute the expressions for F, B and y and simplify we get:
[tex]T=\frac{2L}{U \sqrt{1-\frac{V^2}{c^2}}}[/tex]
which is the time interval in the rest frame multiplied by the Lorentz factor.
The pressure P’ on the front face of the moving box is then given by:
[tex]P\prime = \frac{NM}{AT}\left(\frac{F}{\sqrt{1-\frac{F^2}{c^2}}}-\frac{B}{\sqrt{1-\frac{B^2}{c^2}}}\right)[/tex]
To prove that P = P’ it has to be shown that the expression for pressure in the rest frame is equal to the expression for pressure in the moving frame:
[tex]\frac{NMU^2}{AL\sqrt{1-\frac{U^2}{c^2}}}=\frac{NM}{AT}\left(\frac{F}{\sqrt{1-\frac{F^2}{c^2}}}-\frac{B}{\sqrt{1-\frac{B^2}{c^2}}}\right)[/tex]
Setting the value of c to 1 to simplify things this becomes:
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}}=\frac{NM}{AT}\left(\frac{F}{\sqrt{1-F^2}}-\frac{B}{\sqrt{1-B^2}}\right)[/tex]
-->
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}}= \frac{NM}{AT}\left(\frac{1}{\sqrt{\frac{1}{F^2}-1}}-\frac{1}{\sqrt{\frac{1}{B^2}-1}}\right)[/tex]
Substituting the full expressions for F and B (but with c=1)
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}} = \frac{NM}{AT} \left(\frac{1}{\sqrt{\frac{(1+UV)^2}{(V+U)^2}-1}} - \frac{1}{\sqrt{\frac{(1-UV)^2}{(V-U)^2}-1}}\right)[/tex]
-->
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}} = \frac{NM}{AT} \left(\frac{1}{\sqrt{\frac{(1+UV)^2-(V+U)^2}{(V+U)^2}}} - \frac{1}{\sqrt{\frac{(1-UV)^2-(V-U)^2}{(V-U)^2}}}\right)[/tex]
-->
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}} = \frac{NM}{AT} \left(\frac{1}{\sqrt{\frac{(1-U^2)(1-V^2)}{(V+U)^2}}} - \frac{1}{\sqrt{\frac{(1-U)^2(1-V^2)}{(V-U)^2}}}\right)[/tex]
-->
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}} = \frac{NM}{AT} \left(\frac{(V+U)}{\sqrt{(1-U^2)(1-V^2)}} - \frac{(V-U)}{\sqrt{(1-U^2)(1-V^2)}}\right)[/tex]
-->
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}} = \frac{NM}{AT} \left(\frac{2U}{\sqrt{(1-U^2)(1-V^2)}} \right)[/tex]
Substitute the expression T = [tex]\frac{2L}{U \sqrt{1-\frac{V^2}{c^2}}} [/tex] obtained earlier (setting c=1):
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}} = \frac{NMU\sqrt{1-V^2}}{2AL} \left(\frac{2U}{\sqrt{(1-U^2)(1-V^2)}} \right)[/tex]
-->
[tex]\frac{NMU^2}{AL\sqrt{1-U^2}} = \frac{NMU^2}{AL\sqrt{(1-U^2)}}[/tex]
So P = P’ within the valid domain (-c<V<c) and (-c<U<c)
Q.E.D.