- #1
Orion1
- 973
- 3
I am inquiring if anyone here is qualified to numerically demonstrate the solution to this equation?
The equation is the Proton lifetime derived from the SU(5) Georgi-Glashow model listed in reference 1, eq. (19).
SU(5) Proton lifetime:
[tex]\tau_p \geq \frac{1}{\alpha_{(5)}^2} \frac{M_X^4}{m_p^5}[/tex]
[tex]\tau_p \geq 10^{30} \; \text{years}[/tex]
According to reference 1, the parameters are:
[tex]m_p \geq 0.9382 \; \text{GeV}[/tex] - Proton mass
[tex]M_X \geq 10^{14} \; \text{GeV}[/tex] - X Boson mass
[tex]\alpha_{(5)} = \; \text{?}[/tex] - SU(5) fine structure consant
Experimentally observed values:
[tex]\tau_p \geq 10^{32} \; \text{years}[/tex] - (1990)
[tex]\tau_p \geq 10^{35} \; \text{years}[/tex] - Super-Kamiokande
References for the symbolic mathematical proof to this equation and the value of [tex]\alpha_{(5)}[/tex] would be appreciated.
Reference:
http://home.uchicago.edu/~madhav/su5.pdf"
http://en.wikipedia.org/wiki/Georgi-Glashow_model"
http://en.wikipedia.org/wiki/Proton_decay"
http://en.wikipedia.org/wiki/Electronuclear_force"
http://en.wikipedia.org/wiki/Grand_unification_theory#cite_note-0"
http://hyperphysics.phy-astr.gsu.edu/hbase/forces/unify.html"
http://hyperphysics.phy-astr.gsu.edu/hbase/astro/unify.html#c1"
Last edited by a moderator: